UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018
Program: B.Tech. GSE and GIE
Subject (Course): Statistical Methods in Geosciences
Course Code : GSEG 331
Semester - VI
Max. Marks : 100
Duration : $\mathbf{3} \mathbf{~ H r s}$
No. of page/s: 3

Useful tabular values (single tail):

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Z} \geq 1.96)=0.025, \mathrm{P}(\mathrm{Z} \geq 2.58)=0.005, \mathrm{P}(\mathrm{Z} \geq 1.645)=0.05 \\
& \mathrm{t}_{0.025,8}=2.306, \mathrm{t}_{0.025,9}=2.262, \mathrm{t}_{0.025,10}=2.228, \mathrm{t}_{0.025,14}=2.145, \mathrm{t}_{0.025,15}=2.131, \\
& \mathrm{t}_{0.025,16}=2.120, \mathrm{t}_{0.025,20}=2.086, \mathrm{t}_{0.025,21}=2.080, \mathrm{t}_{0.025,22}=2.074 \\
& \mathrm{t}_{0.05,8}=1.860, \mathrm{t}_{0.05,9}=1.833, \mathrm{t}_{0.05,10}=1.812, \mathrm{t}_{0.05,14}=1.761, \mathrm{t}_{0.05,15}=1.753, \\
& \mathrm{t}_{0.05,16}=1.746, \mathrm{t}_{0.05,20}=1.725, \mathrm{t}_{0.05,21}=1.721, \mathrm{t}_{0.05,22}=1.717 . \\
& \mathrm{F}_{9,11,0.05}=2.90, \mathrm{~F}_{11,9,0.05}=3.10, \mathrm{~F}_{8,10,0.05}=3.07, \mathrm{~F}_{10,8,0.05}=3.35
\end{aligned}
$$

Attempt all questions from Section \mathbf{A} (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

Section A
 (Attempt all questions)

	Lots of 40 components each are called unacceptable if they contain as many as 3 defectives or more. The procedure for sampling the lot is to select 5 components at random and to reject the lot if a defective is found. What is the probability that exactly 1 defective is found in the sample if there are 3 defectives in the entire lot?	[4]	CO1
2.	The probability that a certain kind of component will survive a shock test is 0.75. Find the probability that exactly 2 of the next 4 components tested survive.	[4]	CO1
	Let us consider the least-squares line be $\hat{\mathrm{y}}=\widehat{\beta_{0}}+\widehat{\beta_{1}} \mathrm{x}$, then construct a 95% confidence interval for β_{1}. Given that $\mathrm{n}=10, \mathrm{~S}_{\mathrm{xx}}=263.6, \mathrm{~S}_{\mathrm{xy}}=534.2, \overline{\mathrm{y}}=4.6$, $\overline{\mathrm{x}}=3.8$.	$[4]$	$\mathbf{C O 2}$
	Find $S E\left(\overline{x_{1}}-\overline{x_{2}}\right)$ under $H_{0}: \mu_{1}=\mu_{2}$ where $\overline{x_{1}}, \overline{x_{2}}$ and μ_{1}, μ_{2} are means of two samples and two populations, respectively.	$[4]$	$\mathbf{C O 2}$

5	If $\gamma(h)$ is a variogram function and $C(h)$ is a covariance function for a second order stationary random field following intrinsic hypothesis, prove that,$\gamma(h)=C(0)-C(h)$											[4]	$\mathrm{CO4}$
SECTION B (Attempt all questions and Q10 has internal choice)													
6.	In a large city A, 25% of a random sample of 900 school children had defective eye-sight. In other large city B, 15.5% of random sample of 1600 schoolchildren had the same effect. Is this difference between the two proportions significant? Obtain 95% confidence limits for the difference in the population proportions?											[8]	$\mathrm{CO2}$
7.	The heights of six randomly chosen sailors are in inches: 63, 65, 68, 69, 71 and 72. Those of 10 randomly chosen soldiers are $61,62,65,66,69,69,70,71,72$ and 73. Discuss the light that these data throw on the suggestion that sailors are on the average taller than soldiers.											[8]	$\mathrm{CO2}$
8.	Use the method of least squares to fit a straight line to the accompanying data points. Give the estimates of β_{0} and β_{1} and hence find the coefficient of determination.											[8]	$\mathrm{CO3}$
9	Compute the variogram, $\gamma(h)$, for $h=9$ for the data given below on a straight line. $4,3,3,5,5,5,4,4,5,4,5,17,8,2,2,3,7,7,1,6,10,9,9,10,11,12,11,3,3,4$. Each data is separated by 3 feet.											[8]	$\mathrm{CO4}$
10.	Mathematically, define the simple kriging error variance, and express it as a function of variance-covariance function. OR Mathematically, define the ordinary kriging error variance, and express it as a function of variogram function.											[8]	$\mathrm{CO4}$
SECTION C (Attempt all questions and Q12A, Q12B have internal choice)													
11.A	Find the moment generating function of the binomial distribution and hence find the mean.											[10]	CO1

11.B	Two random samples gave the following results:					[10]	CO2
	Sample	Size	Sample Mean		squares of from the me		
	- 1	10	15		90		
			14		108		
	Test whether the samples come from the same normal population at 10% level of significance.						
12.A	Let $\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{x}+\varepsilon$ be a simple linear regression model with $\varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)$ and let the errors ε_{i} associated with different observations $y_{i}(i=1,2, \ldots, N)$ be independent. Then show that, i. $\widehat{\beta_{0}}$ and $\widehat{\beta_{1}}$ have normal distributions. ii. The mean and variance are given by $E\left[\widehat{\beta_{0}}\right]=\beta_{0}, \operatorname{Var}\left(\widehat{\beta_{0}}\right)=\left(\frac{1}{n}+\frac{\bar{x}^{2}}{s_{x x}}\right) \sigma^{2} \text { and } E\left[\widehat{\beta_{1}}\right]=\beta_{1}, \operatorname{Var}\left(\widehat{\beta_{1}}\right)=\frac{\sigma^{2}}{s_{x x}}$ where $S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$. In particular, the least-squares estimators $\widehat{\beta_{0}}$ and $\widehat{\beta_{1}}$ are unbiased estimators of β_{0} and β_{1} respectively. OR Show that $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$					[10]	CO3
12.B	Consider the given data from three location as mentioned below to estimate the value, $Z\left(x_{0}\right)$ at $x_{0}=(180,120)$ using simple kriging. Given $E[Z(x)]=110$ and the variance-covariance function $2000 * \exp \left(\frac{-h}{250}\right)$.					[10]	CO4
	OR Consider the given data from two location as mentioned below to estimate the value, $Z\left(x_{0}\right)$ at $x_{0}=(180,120)$ using ordinary kriging. Given the variancecovariance function $2000 * \exp \left(\frac{-h}{250}\right)$.						

