Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Signal Conditioning and Telemetry (ICEG351) Semester: VI Program: BTech (ICE) Time: 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory.

	SECTION A		
S. No.		Marks	СО
Q 1	Name any four protocols for serial and parallel data transmission . Also, compare the advantages of serial vs. parallel data transmission.	5	CO4
Q 2	Draw and explain the block diagram of Data Acquisition System considering any Industrial Application.	5	CO4
Q 3	Find the full-scale analog output for a 16-bit DAC and its resolution , if $V_{Ref} = 10 \text{ V}$.	5	CO3
Q 4	Discuss the selection criteria of operational amplifiers for any application.	5	CO2
Q 5	 A push-pull capacitive transducer is used in a Blumlein Bridge. The frequency of Bridge supply is 1 MHz. At balance, the capacitance if each half (arm) of the transducer is 500 pF. a. Determine suitable values of inductance (L_C) for the tightly coupled ratio arms to make the bridge sensitivity essentially independent of variations in inductance (L_C) and bridge supply frequency, 	10	C01
Q 6	 b. Output impedance of bridge under balanced and unbalanced conditions. Compare wired vs. wireless networks on the basis of installation, cost, mobility, reliability, security, types, quality of service (QoS), speed and bandwidth. 	10	CO4
Q 7	Draw and discuss the working of an 8-Bit Flash Type ADC . Considering the V_{Ref} of 10 V,		
V /	calculate the analog input provided to the ADC if the output of the same ADC is 10111011. Also, calculate the resolution of this ADC.	10	CO3

Q 8	Calculate Vo and Io fo	or the following ci	rcuitry:			
	2 V 2 V 2 V 2.5 kΩ 1 V		+		10	CO2
			SECTION-C			
Q 9	Design a Third-order Unity-gain Bessel High-Pass Filter with the corner frequency (f _C) of 100 KHz . Use the following data for your design:					
	Bessel coefficients Filter 1	Ai a1 = 0.756	Bi b1 = 0		20	CO2
	Filter 2	a1 = 0.750 a2 = 0.9996	b1 = 0 b2 = 0.4772			
Q10	minimum to may	kimum of range. I	Develop a signal conditi	(measurand) varies from ioning scheme with high oltage between 0-10 Volts.	10	CO1
	(B) Determine the out $ \begin{array}{c} 30 \text{ k}\Omega \\ 1 \text{ V} \\ \hline \\ \hline \\ 1 \text{ V} \\ \hline \\ \hline \\ 1 \text{ O} \\ \hline 1 \text{ O} \\ 1 \text{ O} \\ \hline 1 \text{ O} \\ \hline 1 \text{ O} \\ \hline 1 O$	atput of the follow $20 \text{ k}\Omega$ $60 \text{ k}\Omega$ $10 \text{ k}\Omega$	ving op-amp circuitry:		10	CO2

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Signal Conditioning and Telemetry (ICEG351) Semester: VI Program: BTech (ICE) Time: 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory.

	SECTION A			
S. No.		Marks	CO	
Q 1	1 Draw and explain the telemetry architecture for small, medium and longer distances showing all components involved along with their details.			
Q 2	Determine the Load Voltage (V_L) for the following circuit: $50 \text{ k}\Omega$ $10 \text{ k}\Omega$ $50 \text{ k}\Omega$ $4 \text{ k}\Omega$ V_L	5	CO2	
Q 3	Find the full-scale analog output for a 12-bit DAC and its resolution , if $V_{Ref} = 5 V$.	5	CO3	
Q 4	Discuss the selection criteria of operational amplifiers for any application.	5	CO2	
	SECTION B			
Q 5	 A Maxwell's Inductance Bridge, is having arm ab consists of a coil with inductance L1 and resistance r1 in series with a non-inductive resistance R. Arm bc and cd are each a non-inductive resistances of 220 Ω. Arm ad consists of a standard variable inductor (L) of 45.7 Ω. Balance is obtained when L2 = 67.8 mH and R = 5.36 Ω. a. Draw the circuit diagram of the bridge circuit, as mentioned above. b. Formulate the necessary equations for Maxwell's Inductance Bridge circuit. c. Find the Resistance and inductance of the coil in the arm ab. 	10	C01	

Q 6	Compare wired vs. wireless networks on the basis of installation, cost, mobility, reliability, security, types, quality of service (QoS), speed and bandwidth.	10	CO4
Q 7	Draw and discuss the working of an 8-Bit Successive Approximation Type ADC . Considering the V_{Ref} of 8 V, calculate the analog input provided to the ADC if the output of the same ADC is 10001011. Also, calculate the resolution of this ADC.	10	CO3
Q 8	Calculate the output voltage of the following circuit $ \begin{array}{c} 80 \text{ k}\Omega \\ 0.4 \text{ V} \\ \hline \hline$	10	CO2

Please refer the next page for $\ensuremath{\textbf{Section}}\xspace \ensuremath{\textbf{C}}\xspace$

Q 9	SECTION-C Design a Fifth-order Unity-gain Butterworth Low-Pass Filter with the corner frequency					
	of F_C of 60 KHz. Please use the following data for your design:					
	Butterworth coefficients Ai Bi					
	Filter 1	a1 = 1	b1 = 0		20	CON
	Filter 2	a2 = 1.6180	b2 = 1		20	CO2
	Filter 3	a3 = 0.6180	b3 = 1			
Q10	minimum to maximum impedance, low output	of range. Develo t impedance an	op a signal conc d output volta g	e input (measurand) varies from ditioning scheme with high input ge between 0-8 Volts. iven by a bridge. Find the output	10	CO1
	shown amplifier. $20 \text{ k}\Omega$ $V_{l} \circ V_{l} $	25 kΩ 2 kΩ 10 kΩ 2 kΩ 10 kΩ 500 kΩ) is 200 mV . Al	lso, find the gain (Vo/Vin) of the	10	CO2