UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018			
Course: Rotordynamics and Condition Monitoring (MREQ 812) Semester: II Program: M.Tech. Rotating Equipment Time: 03 hrs. Max. Marks: 100			
SECTION A			
S. No.		Marks	CO
Q 1	Describe, with the aid of a sketch when necessary, each of the following: a) Spring force, damping force, inertia force, excitation b) Free vibration, forced vibration c) Steady state response, transient motion d) Periodic motion, frequency, period, beat frequency	4	CO1
Q 2	Solve the homogeneous equation $\ddot{x}+4 \dot{x}+13 x=0$ for the following initial conditions: $x(0)=1 \wedge \dot{x}(0)=0$	4	CO1
Q 3	Calculate the natural frequency of the system shown in Fig. 1. Assume that the cantilevers are of negligible mass and their equivalent spring constants are k_{1} and k_{3}. Fig.1: Figure for Q 3	4	CO2
Q 4	Describe briefly the concept of balancing in rigid and flexible rotors.	4	CO2
Q 5	The following data are given for a system with viscous damping: mass $m=4 \mathrm{~kg}$, spring constant $k=5 \mathrm{kN} / \mathrm{m}$, and the amplitude decreases to 0.25 of the initial value after five consecutive cycles. Find the damping coefficient of the damper.	4	CO1
SECTION B			
Q 6	A rotating machine for research has an annular clearance of 0.8 mm between the rotor and the stator. The mass of the rotor is 36 kg with an unbalance of $3 \times 10^{-3} \mathrm{~kg}$ m . The rotor is mounted symmetrically on a round shaft, 300 mm in length and supported by two bearings. The operating speed ranges from 600 to 6000 rpm . If the	10	CO3

	dynamic deflection of the shaft is to be less than 0.1 mm , specify the size of the shaft.		
Q 7	A circular disk of 18 kg is mounted symmetrically on a shaft, 0.75 m in length and 20 mm in diameter. The mass center of the disk is 3 mm from its geometric center. The unit is rotated at 1000 rpm and the damping factor is estimated to be 0.05. Calculate the dynamic load on the bearings.	$\mathbf{1 0}$	$\mathbf{C O 3}$
Q 8	A force ' $P_{0} \sin \omega t '$ acts on a displacement ' x_{0} sin ($\omega t-\pi / 3$)'. If $\mathrm{P}_{0}=100 \mathrm{~N}, \mathrm{x}_{0}=0.02$ $\mathrm{~m}, \omega=2 \pi$ rad/s. Find the work done during (i) the first cycle (ii) the first second (iii) the first quarter second.	$\mathbf{1 0}$	$\mathbf{C O 1}$
Q 9	Explain the design theory of vibration measuring instruments. OR		
Derive the frequency response of a spring-mass-damper system for base excitation case.	$\mathbf{1 0}$	$\mathbf{C O 3}$	

SECTION-C

Q 10	Consider the undamped system $M\|\ddot{x}\|+K\|x\|=\|Q(t)\|$. $\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]\left\{\begin{array}{l}\ddot{x}_{1} \\ \ddot{x}_{2}\end{array}\right\}+\left[\begin{array}{cc}24 & -4 \\ -4 & 6\end{array}\right]\left\{\begin{array}{l}x_{1} \\ x_{2}\end{array}\right\}=\left\{\begin{array}{l}8 \\ 0\end{array}\right\}$ a) Find the eigenvalues b) Evaluate the modal matrix [u]. c) Derive the uncoupled equations expressed in the principal coordinates. d) Express the uncoupled equations in the global/normal coordinates.	$\mathbf{2 0}$	$\mathbf{C O 3 /}$ $\mathbf{C O 4}$
Q 11	Describe the significance of condition monitoring in the area of rotordynamics. OR Describe the impact of vibration on human health.	$\mathbf{2 0}$	$\mathbf{C O 5}$

