UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Rotordynamics and Condition Monitoring (MREQ 812) Semester: II Program: M.Tech. Rotating Equipment Time: 03 hrs.

Max. Marks: 100

Instructions: Assume any missing data

SECTION A				
S. No.		Marks	CO	
Q 1	 Describe, with the aid of a sketch when necessary, each of the following: a) Spring force, damping force, inertia force, excitation b) Free vibration, forced vibration c) Steady state response, transient motion d) Periodic motion, frequency, period, beat frequency 	4	CO1	
Q 2	Solve the homogeneous equation $\ddot{x}+4\dot{x}+13x=0$ for the following initial conditions: $x(0)=1 \wedge \dot{x}(0)=0$	4	CO 1	
Q 3	Calculate the natural frequency of the system shown in Fig. 1. Assume that the cantilevers are of negligible mass and their equivalent spring constants are k_1 and k_3 . Cantilever k_1 k_2 k_3 k_4 m x(t) Fig.1: Figure for Q 3	4	CO2	
Q 4	Describe briefly the concept of balancing in rigid and flexible rotors.	4	CO2	
Q 5	The following data are given for a system with viscous damping: mass $m = 4$ kg, spring constant $k = 5$ kN/m, and the amplitude decreases to 0.25 of the initial value after five consecutive cycles. Find the damping coefficient of the damper.	4	CO 1	
	SECTION B			
Q 6	A rotating machine for research has an annular clearance of 0.8 mm between the rotor and the stator. The mass of the rotor is 36 kg with an unbalance of 3 X 10^{-3} kg-m. The rotor is mounted symmetrically on a round shaft, 300 mm in length and supported by two bearings. The operating speed ranges from 600 to 6000 rpm. If the	10	CO3	

	dynamic deflection of the shaft is to be less than 0.1 mm, specify the size of the shaft.		
Q 7	A circular disk of 18 kg is mounted symmetrically on a shaft, 0.75 m in length and 20 mm in diameter. The mass center of the disk is 3 mm from its geometric center. The unit is rotated at 1000 rpm and the damping factor is estimated to be 0.05. Calculate the dynamic load on the bearings.	10	CO3
Q 8	A force ' $P_0 \sin \omega t$ ' acts on a displacement ' $x_0 \sin (\omega t - \pi/3)$ '. If $P_0 = 100$ N, $x_0 = 0.02$ m, $\omega = 2\pi$ rad/s. Find the work done during (i) the first cycle (ii) the first second (iii) the first quarter second.	10	CO1
Q 9	Explain the design theory of vibration measuring instruments. OR Derive the frequency response of a spring-mass-damper system for base excitation case.	10	CO3
	SECTION-C		
Q 10	Consider the undamped system $M[\ddot{x}] + K[x] = [Q(t)]$. $\begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \ddot{x_1} \\ \ddot{x_2} \end{bmatrix} + \begin{bmatrix} 24 & -4 \\ -4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$ a) Find the eigenvalues b) Evaluate the modal matrix [u]. c) Derive the uncoupled equations expressed in the principal coordinates. d) Express the uncoupled equations in the global/normal coordinates.	20	CO3/ CO4
Q 11	Describe the significance of condition monitoring in the area of rotordynamics. OR Describe the impact of vibration on human health.	20	CO5