UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Programme: B.Tech/common subject
Course Name: Engineering Mechanics
Semester - : II

Course Code: MECH 1002
Max. Marks : 100
No. of page/s: 04
Duration : 3 Hrs
Note: Attempt all the questions. There is internal choice in section B and section C. Assume suitable data if missing.

	Cection 'A'	Mark s	$\mathbf{C O}$
1. Replace the loading on the frame given in figure by its resultant in magnitude and position.	CO1 CO2		

ascended by the man when the ladder slips.		
6. For the system shown in figure, find the tension in the cable and reaction at the support.	10	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$
7. Find the forces in the members $\mathrm{AB}, \mathrm{BC}, \mathrm{BF}$ and FD of truss in magnitude and direction.	10	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} 4 \end{aligned}$
8. Two rockets are launched at a fireworks display. Rocket A is launched	10	CO7

with an initial velocity $\mathrm{v}_{0}=100 \mathrm{~m} / \mathrm{s}$ and rocket B is launched ' t ' seconds later with the same initial velocity. The two rockets are timed to explode simultaneously at a height of 300 m as A is falling and B is rising. Assuming a constant acceleration $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$, determine the time ' t '.

OR

Find the least initial velocity which a projectile may have, so that it may clear a wall 3.6 m high and 4.8 m distant (from the point of projection) and strike the horizontal plane through the foots of the wall at a distance 3.6 m beyond the wall. The point of projection is at the same level as the foot of the wall.

Section ' C '
9. (a) Determine, by direct integration, the moment of inertia of the parabolic spandrel of \boldsymbol{n} th order with respect to the x axis.

(b) Derive an expression for the moment of inertia for a triangular lamina about its centroidal axis parallel to the base and its base.

OR

Find the moment of inertia of the shaded portion:

12	CO5

(a) about the given axis $\mathrm{X}-\mathrm{X}$ and;
(b) about the centroidal axis parallel to the given $\mathrm{X}-\mathrm{X}$ axis

