Name:		
Enrolment No:		

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, April/May 2018

Course: Linear Integrated Circuits (ELEG263)
 Program: B Tech Electrical

Time: 03 hrs.
No. of page/s: 4

Instructions:

- The question paper contains three sections namely Section-A, Section-B and Section-C.
- Attempt all questions. The number of marks for each question is mentioned on the right side of it.
- Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

SECTION A (20 Marks)			
S. No.		Marks	CO
Q 1	(a) The open loop gain of a certain op-amp is 1.75×10^{5} and its common mode gain is 0.18 . find the CMRR in decibels (b) Distinguish between input bias current and input off-set current in op-amp. And then calculate the input bias and off-set currents for an op-amp with input currents $8.3 \mu \mathrm{~A}$ and $7.9 \mu \mathrm{~A}$. (c) How long does it take the output voltage of an op-amp to go from $-10 \mathrm{~V} i+10 \mathrm{~V}$ if the slew rate is $0.5 \mathrm{~V} / \mu \mathrm{s}$	1+3+1	CO1
Q 2	Assuming the op amp to be ideal, it is required to design the circuit shown in Fig. 1 to implement a current amplifier with gain $i_{L} / i_{L}=10$. Find the required value for R. Fig. 1	5	CO 2
Q 3	(a) Draw a circuit of 4-bit R-2R ladder DAC using $15 \mathrm{k} \Omega$ and $30 \mathrm{k} \Omega$ resistors.	5	$\mathrm{CO5}$

	(b) For a reference voltage of 16 V , calculate the output voltage for an input of 1101 to the above circuit from part (a)		
Q 4	For the circuit in Fig.2, let the op-amp has saturation voltages be $\pm 10 \mathrm{~V}, R_{1}=100 \mathrm{k} \Omega$, $R_{2}=R=1 \mathrm{M} \Omega$, and $C=0.01 \mu \mathrm{~F}$. Find the frequency of oscillation.	5	CO3
	Fig. 2 Fig. 3		
SECTION B (40 Marks)			
Q 5	Consider the noninverting amplifier circuit shown in Fig.3. As shown, the circuit is designed for a nominal gain $1+\frac{R_{2}}{R_{1}}$ It is fed with a low-frequency sine-wave signal of peak voltage V_{p} and is connected to a load resistor R_{L}. The op amp is specified to have output saturation voltages of $\pm 13 \mathrm{~V}$ and output current limits of $\pm 20 \mathrm{~mA}$. (a) For $V_{p}=1 \mathrm{~V}$ and $R_{L}=1 \mathrm{k} \Omega$, calculate $v_{0}, i_{L}, i_{F}, i_{0}$ for the signal resulting at the output of the amplifier. (b) For $R_{L}=1 \mathrm{k} \Omega$, what is the maximum value of $V p$ for which an undistorted sinewave output is obtained? (c) For $V_{p}=1 \mathrm{~V}$, what is the lowest value of R_{L} for which an undistorted sine-wave output is obtained?	4+2+2	CO1
Q 6	(a) Sketch and explain operation of the circuit of a 555 timer connected as an astable multi-vibrator. (b) If the frequency of the oscillations of astable multi-vibrator using 555 timer is 350 kHz , determine the value of capacitor C needed using $R_{A}=R_{B}=7.5 \mathrm{k} \Omega$.	6+2	CO4
Q 7	With neat block diagram, explain the operation of 8 -bit successive approximation register type ADC. What is the maximum conversion time for this type of ADC.	8	CO5
Q 8	Determine the output V_{0} of the following Op -amp circuit shown in Fig. 4. (Assume that all the Op -amps are ideal). Where $\mathrm{V}_{1}=5+2 \sin \omega \mathrm{t}, \mathrm{V}_{2}=3 \mathrm{t}+2 \cos \omega \mathrm{t}, \mathrm{R}=100 \mathrm{k} \Omega$, $\mathrm{C}=10 \mu \mathrm{~F}, \mathrm{R}_{2}=2 \mathrm{R}_{1}$	4+4	CO2

	Fig. 4		
Q9	Determine the transfer function of $3^{\text {rd }}$ order filter as shown in Fig. 5 and then determine the type of filter (LP, HP, BP or BS filter) and its cut-off frequency. (assume that all op-amp are ideal) Fig. 5	8	CO 3
	SECTION-C (40 Marks) Attempt any two questions from this section		
Q 10	(a) Design an inverting op-amp circuit to form the weighted sum V_{0} of two inputs V_{1} and V_{2}. It is required that $V_{0}=-\left(V_{1}+5 V_{2}\right)$. Choose values for R_{1}, R_{2}, and R_{F} so that for a maximum output voltage of 10 V the current in the feedback resistor will not exceed 1 mA . (b) Design the circuit shown in Fig. 6 to have an input resistance of $100 \mathrm{k} \Omega$ and a gain $\mathrm{V}_{0} / \mathrm{V}_{\mathrm{i}}$ that can be varied from -1 to -10 using the $10 \mathrm{k} \Omega$ potentiometer R_{4}. What voltage gain results when the potentiometer is set exactly at its middle value?	10+10	CO2

	Fig. 6 Fig. 7		
Q 11	(a) Design a multi-feedback $2^{\text {nd }}$ order low pass filter shown in Fig. 7 with a cut-off frequency of 1 kHz , a voltage gain of 20 dB and a quality factor (Q) of 5 . Given that $\mathrm{R}_{1}=\mathrm{R}_{2}=1 \mathrm{k} \Omega$ (b) Design an op-amp wave form generating circuit to produce the waveform as given below. Explain the circuit operation with relevant waveforms.	10+10	CO3
Q 12	(a) Design an astable multi-vibrator using 555 timer for a frequency of 10 kHz and a duty cycle of 70%. Assume $\mathrm{C}=0.1 \mu \mathrm{~F}$ (b) Design a Sallen key second order band pass filter shown in fig. with bandwidth 10% of center frequency. Given that the center frequency is 10 kHz and $\mathrm{R}=1 \mathrm{k} \Omega$	10+10	CO4

