Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Linear Integrated Circuits (ELEG263) Program: B Tech Electrical Time: 03 hrs. No. of page/s: 4

Semester: IV

Max. Marks: 100

Instructions:

- The question paper contains three sections namely Section-A, Section-B and Section-C.
- Attempt all questions. The number of marks for each question is mentioned on the right side of it.
- Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

SECTION A (20 Marks)

S. No.		Marks	CO
Q 1	 (a) The open loop gain of a certain op-amp is 1.75 × 10⁵ and its common mode gain is 0.18. find the CMRR in decibels (b) Distinguish between input bias current and input off-set current in op-amp. And then calculate the input bias and off-set currents for an op-amp with input currents 8.3 μA and 7.9 μA. (c) How long does it take the output voltage of an op-amp to go from -10 V i+10 V if the slew rate is 0.5 V/μs 	1+3+1	CO1
Q 2	Assuming the op amp to be ideal, it is required to design the circuit shown in Fig.1 to implement a current amplifier with gain $i_L/i_L = 10$. Find the required value for <i>R</i> .	5	CO2
Q 3	(a) Draw a circuit of 4-bit R-2R ladder DAC using 15 k Ω and 30 k Ω resistors.	5	C05

	(b) For a reference voltage of 16 V, calculate the output voltage for an input of 1101 to the above circuit from part (a)		
Q 4	For the circuit in Fig.2 , let the op-amp has saturation voltages be ± 10 V, $R_1 = 100$ k Ω , $R_2 = R = 1$ M Ω , and $C = 0.01$ μ F. Find the frequency of oscillation.	5	CO3
	$R_{2} = 9 \text{ k}\Omega$ R_{1} R_{2} R_{1} R_{2} R_{3} R_{4} R		
	SECTION B (40 Marks)		
Q 5	Consider the noninverting amplifier circuit shown in Fig.3 . As shown, the circuit is designed for a nominal gain $1 + \frac{R_2}{R_1}$ It is fed with a low-frequency sine-wave signal of peak voltage V_p and is connected to a load resistor R_L . The op amp is specified to		CO1
	have output saturation voltages of ±13 V and output current limits of ±20 mA. (a) For $V_p = 1$ V and $R_L = 1$ k Ω , calculate v_0, i_L, i_F, i_0 for the signal resulting at the output of the amplifier.	4+2+2	
	 (b) For R_L = 1 kΩ, what is the maximum value of Vp for which an undistorted sine-wave output is obtained? (c) For V_p = 1 V, what is the lowest value of R_L for which an undistorted sine-wave output is obtained? 		
Q 6	 (a) Sketch and explain operation of the circuit of a 555 timer connected as an astable multi-vibrator. (b) If the frequency of the oscillations of astable multi-vibrator using 555 timer is 350 kHz, determine the value of capacitor <i>C</i> needed using <i>R_A</i> = <i>R_B</i> = 7.5 kΩ. 	6+2	CO4
Q 7	With neat block diagram, explain the operation of 8-bit successive approximation register type ADC. What is the maximum conversion time for this type of ADC.	8	C05
Q 8	Determine the output V_0 of the following Op-amp circuit shown in Fig. 4 . (Assume that all the Op-amps are ideal). Where $V_1 = 5+2\sin\omega t$, $V_2 = 3t+2\cos\omega t$, $R = 100k\Omega$, $C = 10\mu F$, $R_2 = 2R_1$	4+4	CO2

	$\begin{array}{c} C \\ \downarrow \\$		
Q9	Determine the transfer function of 3 rd order filter as shown in Fig. 5 and then determine the type of filter (LP, HP, BP or BS filter) and its cut-off frequency (assume that all op-amp are ideal) $V_i \circ \underbrace{c}_{V_i} \circ \underbrace{c}_{I} & \underbrace{c}_{I} &$	8	CO3
	SECTION-C (40 Marks) Attempt any two questions from this section		
Q 10	 (a) Design an inverting op-amp circuit to form the weighted sum V₀ of two inputs V₁ and V₂. It is required that V₀ = - (V₁ + 5 V₂). Choose values for R₁, R₂, and R_F so that for a maximum output voltage of 10 V the current in the feedback resistor will not exceed 1 mA. (b) Design the circuit shown in Fig. 6 to have an input resistance of 100 kΩ and a gain V₀/V₁ that can be varied from -1 to -10 using the 10 kΩ potentiometer R₄. What voltage gain results when the potentiometer is set exactly at its middle value? 	10+10	CO2

	$ \begin{array}{c} $		
Q 11	(a) Design a multi-feedback 2^{nd} order low pass filter shown in Fig. 7 with a cut-off frequency of 1 kHz, a voltage gain of 20 dB and a quality factor (Q) of 5. Given that $R_1 = R_2 = 1 k\Omega$ (b) Design an op-amp wave form generating circuit to produce the waveform as given below. Explain the circuit operation with relevant waveforms. $v_0 \uparrow$ +12 v 0.5 ms -12 v $v_1 \to 0.5 ms$	10+10	CO3
Q 12	 (a) Design an astable multi-vibrator using 555 timer for a frequency of 10 kHz and a duty cycle of 70%. Assume C = 0.1 μF (b) Design a Sallen key second order band pass filter shown in fig. with bandwidth 10% of center frequency. Given that the center frequency is 10 kHz and R = 1 kΩ 	10+10	CO4