UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April/May 2018

Course: Kinematics and Dynamics of Machines
Program: B. Tech (Automotive Design Engineering)
Time: 03 hrs.

Semester: IV
Max. Marks: 100

Instructions: Assume Suitable Data if necessary attempt all questions; internal choices are given along with the questions.

SECTION A

S. No.	$\mathbf{M a r k s}$	CO	
Q 1	State and explain angular-velocity-ratio theorem as applicable to mechanism.	$\mathbf{0 5}$	$\mathbf{C O 1}$
Q 2	Two masses in different planes are necessary to rectify the dynamic unbalance. Comment.	$\mathbf{0 5}$	$\mathbf{C O 4}$
Q 3	Sketch gear teeth and show the mentioned terms on it: face, flank, tooth thickness, space width, face width and circular pitch.	$\mathbf{0 5}$	$\mathbf{C O 3}$
Q 4	Define base circle, pitch circle, trace point, pitch curve and pressure angle.	$\mathbf{0 5}$	$\mathbf{C O 2}$

SECTION B

Q5	A simple quick return mechanism is shown in the figure 1. The forward to return ratio of the quick return mechanism is $2: 1$. If the radius of the crank $\left(\mathrm{O}_{1} \mathrm{P}\right)$ is 125 mm , find out the distance 'd' (in mm) between the crank centre to lever pivot centre point.		

| | anticlockwise, and
 2. when A makes one revolution clockwise and D is stationary?
 The number of teeth on the gears A and D are 40 and 90 respectively. | |
| :--- | :--- | :--- | :--- |

SECTION-C			
Q 9	Draw the cam profile for following conditions: Follower type $=$ Knife edged, in-line; lift $=50 \mathrm{~mm}$; base circle radius $=$ 50 mm ; out stroke with simple harmonic motion (SHM), for 60° cam rotation; dwell for 45° cam rotation; return stroke with SHM , for 90° cam rotation; dwell for the remaining period. Determine max. velocity and acceleration during out stroke and return stroke if the cam rotates at 1000 rpm in clockwise direction. OR Draw the cam profile for following conditions: Follower type $=$ knife edged follower, in line; follower rises by 24 mm with simple harmonic motion (SHM) in $1 / 4$ rotation, dwells for $1 / 8$ rotation and then raises again by 24 mm with uniform acceleration and retardation motion (UARM) in $1 / 4$ rotation and dwells for $1 / 16$ rotation before returning with SHM. Base circle radius $=30 \mathrm{~mm}$.	20	$\mathrm{CO5}$
Q 10	(a)An automobile car is travelling along a track of 100 m mean radius. The moment of inertia of 500 mm diameter wheel is $1.8 \mathrm{~kg} \mathrm{~m}^{2}$. The engine axis is parallel to the rear axle and crank shaft rotates in the same sense as the wheel. The moment of inertia of rotating parts of the engine is $1 \mathrm{~kg} \mathrm{~m}^{2}$. The gear ratio is 4 and the mass of the vehicle is 1500 kg . If the centre of gravity of the vehicle is 450 mm above the road level and width of the track of the vehicle is 1.4 m , determine the limiting speed of the vehicle for condition that all four wheels maintain contact with the road surface.	10	$\mathrm{CO5}$
	(b) The four masses A, B, C and D are $100 \mathrm{~kg}, 150 \mathrm{~kg}, 120 \mathrm{~kg}$ and 130 kg attached to a shaft and revolve in the same plane. The corresponding radii of rotations are $22.5 \mathrm{~cm}, 17.5 \mathrm{~cm}, 25 \mathrm{~cm}$ and 30 cm and the angles measured from A are 450,1200 and 2550 . Find the position and magnitude of the balancing mass, if the radius of rotation is 60 cm .	10	$\mathrm{CO4}$

