Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018			
Course: Electromagnetic Field Program: B. Tech (EE and BT) Time: 03 hrs.	Electromagnetic Field Theory Semester: B. Tech (EE and BT) 3 hrs. Max. Mark		
SECTION A			
S. No.		Marks	CO
Q 1	(a) What are the three most common types of structures that support the TEM mode of propagation? (b) Compare the advantages and disadvantages of coaxial cable and two-wire transmission line. (c) State Snell's of reflection and refraction. (d) What is meant by a "distortionless line"? What relation must the distributed parameters of a line satisfy in order for the line to be distortionlcss. (e) Explain the significance of displacement current.	[2] [2] [2] [2] [2]	$\begin{aligned} & \mathrm{CO} 3 \\ & \mathrm{CO} 3 \\ & \mathrm{CO} 2 \\ & \mathrm{CO} 3 \\ & \mathrm{CO} \end{aligned}$
Q. 2	(a) A uniform plane wave of 400 MHz traveling in a free space impinges normally on a larger block of material having $\varepsilon_{r}=2$ and $\mu_{r}=4$. Calculate transmission and reflection coefficients at the interface. (b) A standing wave has a maximum field of $150 \mu \mathrm{~V} / \mathrm{m}$ and a minimum field of 30 $\mu V / m$. Find (a) the SWR and (b) the reflection coefficient for this wave.	[5]	$\begin{align*} & \mathrm{CO} 2 \\ & \mathrm{CO} 2 \tag{5} \end{align*}$
SECTION B			
Q. 3	(a) A telephone line has $\mathrm{R}=30 \Omega / \mathrm{km}, \mathrm{L}=100 \mathrm{mH} / \mathrm{km}, \mathrm{G}=0$, and $\mathrm{C}=20 \mu \mathrm{~F} / \mathrm{km}$. At $\mathrm{f}=$ 1 kHz , obtain: (i) The characteristics impedance of the line. (ii) The propagation constant. (iii) The phase velocity (b) A $75(\Omega)$ transmission line is terminated at a load impedance Z_{L}. If the line is $5 \lambda / 8$ long, calculate $Z_{i n}$ when (i) $Z_{L}=j 45(\Omega)$ and (b) $Z_{L}=25-j 65(\Omega)$	[10]	CO3
Q. 4	(a) Give the Statement of Faraday's Law (b) Write the differential and integral form of Faraday's Law. (c) A conducting circular loop of radius $20(\mathrm{~cm})$ lies in $\mathrm{Z}=0$ plane in a magnetic field $\vec{B}=10 \cos (377 t) \widehat{a_{z}} \mathrm{~m} \mathrm{~Wb} / \mathrm{m}^{2}$. Calculate the induced voltage in the loop.	[10]	CO1
Q. 5	For the case of oblique incidence of a uniform plane wave with perpendicular polarization on a lossless dielectric boundary (x-y plane), write the instantaneous	[10]	CO 2

\begin{tabular}{|c|c|c|c|}
\hline \& expressions \(\mathrm{E}(\mathrm{x}, \mathrm{z}, \mathrm{t})\) and \(\mathrm{H}(\mathrm{x}, \mathrm{z}, \mathrm{t})\) for the total field in both mediums. Find the reflection coefficient and transmission coefficient and establish the relation between them. \& \& \\
\hline Q. 6 \& \begin{tabular}{l}
(a) What are \(\Gamma\) and S for a line with an open-circuit termination? A short-circuit termination? \\
(b) Where do the minima of the voltage standing wave on a lossless line with a resistive termination occur (a) if \(\mathrm{R}_{\mathrm{L}}>\mathrm{R}_{0}\) and (b) if \(\mathrm{R}_{\mathrm{L}}<\mathrm{R}_{0}\) ? \\
(c) Sketch the standing wave patterns for voltage along a transmission line when it is terminated with (i) short circuit (ii) open circuit (iii) resistive load with \(\mathrm{R}_{\mathrm{L}}>\mathrm{R}_{0}\) (iv) resistive load \(\mathrm{R}_{\mathrm{L}}<\mathrm{R}_{0}\) (v) inductive load and (vi) capacitive load.
\end{tabular} \& \begin{tabular}{l}
[2] \\
[2] \\
[6]
\end{tabular} \& CO 4 \\
\hline Q. 7 \& Draw the equivalent circuit of a two-wire transmission line and then develop the transmission line equations for the same line. \& [10] \& CO 3 \\
\hline Q. 8 \& \begin{tabular}{l}
(a) Explain clearly the structure of field lines in strip lines and microstrip lines. Why are propagating modes along the microstrip lines are non-TEM and not pure TEM modes? \\
(b) Discuss the various types of losses in the microstrip lines and write a note on quality factor of transmission line. \\
OR \\
(a) Determine the characteristic impedance and the effective dielectric constant for a microstrip line fabricated in an alumina substrate \(\left(\varepsilon_{r}=9.7\right)\) if the \(\mathrm{W} / \mathrm{b}\) ratio is (i) 0.5 , (ii) 5 . Also find the velocity of propagation in each case.
\end{tabular} \& [10]

[10] \& CO5 \\
\hline \multicolumn{4}{|c|}{SECTION-C} \\

\hline Q. 9 \& | (a) Describe how the characteristic impedance of a parallel plate transmission line depends on plate width and dielectric thickness. What is the difference between the surface resistance and the resistance per unit length of a parallel plate transmission line. |
| :--- |
| (b) A coaxial cable contains an insulating material of conductivity σ. If the radius of the central conductor is a and that of sheath is b, show that the conductance per unit length is $\mathrm{G}=\frac{2 \pi \sigma}{\ln \left(\frac{b}{a}\right)}$ |
| OR |
| (a) Explain how the value of a terminating resistance can be determined by measuring the Standing wave ratio on a lossless transmission line. |
| (b) The single stub method is used to match a load impedance $25+\mathrm{j} 25(\Omega)$ to a 50 (Ω) transmission line. Find the position and length of a short-circuited stub required to match the line. Use the Smith chart for this purpose. | \& $[5]$

$[15]$

$[5]$

$[15]$ \& $$
\mathrm{CO} 4
$$

$$
\mathrm{CO} 4
$$

$$
\mathrm{CO} 4
$$

$$
\mathrm{CO} 4
$$ \\

\hline
\end{tabular}

General Formulae for stripline and microstrip lines:

Stripline:

$$
\begin{gathered}
\text { for } \quad \frac{W}{b} \leq 0.5 \\
Z_{0} \sqrt{\varepsilon_{r}}=30 \ln \left\{2\left(\frac{1+\sqrt{k}}{1-\sqrt{k}}\right)\right\} \text { ohms } \\
\text { and for } \frac{W}{b}>0.5 \\
Z_{0} \sqrt{\varepsilon_{r}}=30 \pi^{2} / \ln \left\{2\left[\left(\frac{1+\sqrt{k^{\prime}}}{1-\sqrt{k^{\prime}}}\right)\right]\right\} \text { ohm }
\end{gathered}
$$

Microstrip line:

$$
\begin{aligned}
& \text { For } \frac{W}{h}=0.5<1 \\
& \qquad \begin{aligned}
\epsilon_{e f f}=\frac{\epsilon_{r}+1}{2}+\frac{\epsilon_{r}-0}{2}\left[\frac{1}{\sqrt{1+\frac{12 b}{W}}+0.04\left(1-\frac{W}{h}\right)^{2}}\right] \\
Z_{0}=\frac{60}{\sqrt{\epsilon_{r}}} \ln \left(\frac{8 h}{W}+\frac{W}{4 h}\right)
\end{aligned}
\end{aligned}
$$

(i) $\frac{W}{h}=5>1$

$$
\begin{gathered}
\epsilon_{e f f}=\frac{\epsilon_{r}+1}{2}+\frac{\epsilon_{r}-1}{2}\left(\frac{1}{\sqrt{1+\frac{12 b}{W}}}\right) \\
Z_{0}=\frac{120 \pi}{\sqrt{\epsilon_{r}}}\left[\frac{1}{\left[\frac{W}{h}+1.393+0.667 \ln \left(1.444+\frac{W}{h}\right)\right]}\right]
\end{gathered}
$$

