Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Electromagnetic Field Theory Program: B. Tech (EE and BT) Time: 03 hrs.

Semester: IV

Max. Marks: 100

SECTION A				
	Marks	СО		
(a) What are the three most common types of structures that support the TEM mode of propagation?	[2]	CO3		
(b) Compare the advantages and disadvantages of coaxial cable and two-wire transmission line.	[2]	CO3		
(c) State Snell's of reflection and refraction.(d) What is meant by a "distortionless line"? What relation must the distributed	[2]	CO2		
parameters of a line satisfy in order for the line to be distortionless.	[2]	CO3		
(e) Explain the significance of displacement current.	[2]	CO1		
(a) A uniform plane wave of 400 MHz traveling in a free space impinges normally on				
a larger block of material having $\varepsilon_r = 2$ and $\mu_r = 4$. Calculate transmission and reflection coefficients at the interface.	[5]	CO2		
(b) A standing wave has a maximum field of 150 $\mu V/m$ and a minimum field of 30 $\mu V/m$. Find (a) the SWR and (b) the reflection coefficient for this wave.	[5]	CO2		
SECTION B				
(a) A telephone line has $R = 30 \Omega/km$, L=100 mH/km, G=0, and C= 20μ F/km. At f = 1kHz, obtain: (i) The characteristics impedance of the line				
	[10]	CO3		
long, calculate Z_{in} when (i) $Z_L = j 45 (\Omega)$ and (b) $Z_L = 25 - j 65(\Omega)$				
(a) Give the Statement of Faraday's Law(b) Write the differential and integral form of Faraday's Law.				
(c) A conducting circular loop of radius 20 (cm) lies in Z=0 plane in a magnetic field	[10]	CO1		
$\vec{B} = 10\cos(377 t)\hat{a_z}$ m Wb/m ² . Calculate the induced voltage in the loop.	_			
For the case of oblique incidence of a uniform plane wave with perpendicular	[10]	CO2		
	 (a) What are the three most common types of structures that support the TEM mode of propagation? (b) Compare the advantages and disadvantages of coaxial cable and two-wire transmission line. (c) State Snell's of reflection and refraction. (d) What is meant by a "distortionless line"? What relation must the distributed parameters of a line satisfy in order for the line to be distortionless. (e) Explain the significance of displacement current. (a) A uniform plane wave of 400 MHz traveling in a free space impinges normally on a larger block of material having ε_r = 2 and μ_r = 4. Calculate transmission and reflection coefficients at the interface. (b) A standing wave has a maximum field of 150 μV/m and a minimum field of 30 μV/m. Find (a) the SWR and (b) the reflection coefficient for this wave. SECTION B (a) A telephone line has R = 30 Ω/km, L=100 mH/km, G=0, and C= 20µF/km. At f = 1kHz, obtain: (i) The characteristics impedance of the line. (ii) The propagation constant. (iii) The phase velocity (b) A 75 (Ω) transmission line is terminated at a load impedance Z_L. If the line is 5λ/8 long, calculate Z_{in} when (i) Z_L = j 45 (Ω) and (b) Z_L = 25 - j 65(Ω) (a) Give the Statement of Faraday's Law (b) Write the differential and integral form of Faraday's Law. (c) A conducting circular loop of radius 20 (cm) lies in Z=0 plane in a magnetic field B	Marks(a) What are the three most common types of structures that support the TEM mode of propagation?[2](b) Compare the advantages and disadvantages of coaxial cable and two-wire transmission line.[2](c) State Snell's of reflection and refraction.[2](d) What is meant by a "distortionless line"? What relation must the distributed parameters of a line satisfy in order for the line to be distortionless.[2](e) Explain the significance of displacement current.[2](a) A uniform plane wave of 400 MHz traveling in a free space impinges normally on 		

	expressions $E(x, z, t)$ and $H(x, z, t)$ for the total field in both mediums. Find the reflection coefficient and transmission coefficient and establish the relation between them.		
Q.6	(a) What are Γ and S for a line with an open-circuit termination? A short-circuit termination?	[2]	
	(b) Where do the minima of the voltage standing wave on a lossless line with a resistive termination occur (a) if $R_L > R_0$ and (b) if $R_L < R_0$?	[2]	CO4
	(c) Sketch the standing wave patterns for voltage along a transmission line when it is terminated with (i) short circuit (ii) open circuit (iii) resistive load with $R_L > R_0$ (iv) resistive load $R_L < R_0$ (v) inductive load and (vi) capacitive load.	[6]	
Q.7	Draw the equivalent circuit of a two-wire transmission line and then develop the transmission line equations for the same line.	[10]	CO3
Q.8	(a) Explain clearly the structure of field lines in strip lines and microstrip lines. Why are propagating modes along the microstrip lines are non-TEM and not pure TEM modes?	[10]	
	(b) Discuss the various types of losses in the microstrip lines and write a note on quality factor of transmission line.OR		CO5
	(a) Determine the characteristic impedance and the effective dielectric constant for a microstrip line fabricated in an alumina substrate ($\varepsilon_r = 9.7$) if the W/b ratio is (i) 0.5, (ii) 5. Also find the velocity of propagation in each case.	[10]	
	SECTION-C		
Q.9	(a) Describe how the characteristic impedance of a parallel plate transmission line depends on plate width and dielectric thickness. What is the difference between the surface resistance and the resistance per unit length of a parallel plate	[5]	CO4
	 transmission line. (b) A coaxial cable contains an insulating material of conductivity σ. If the radius of the central conductor is a and that of sheath is b, show that the conductance per unit length is 	[15]	CO4
	$\mathbf{G} = \frac{2\pi\sigma}{\ln\left(\frac{b}{a}\right)}.$		
	OR		
	 (a) Explain how the value of a terminating resistance can be determined by measuring the Standing wave ratio on a lossless transmission line. (b) The single stub method is used to match a load impedance 25 + j 25 (Ω) to a 50 	[5]	CO4
	(0) The single stub method is used to indeen a four impedance $23 + j 25$ (2) to a so (Ω) transmission line. Find the position and length of a short-circuited stub required to match the line. Use the Smith chart for this purpose.	[15]	CO4

General Formulae for stripline and microstrip lines:

Stripline:

$$for \qquad \frac{W}{b} \le 0.5$$

$$Z_0 \sqrt{\varepsilon_r} = 30 \ln\{2\left(\frac{1+\sqrt{k}}{1-\sqrt{k}}\right)\} ohms$$

$$and for \qquad \frac{W}{b} > 0.5$$

$$Z_0 \sqrt{\varepsilon_r} = 30\pi^2 / \ln\{2[(\frac{1+\sqrt{k'}}{1-\sqrt{k'}})]\} ohms$$

Microstrip line:

For
$$\frac{W}{h} = 0.5 < 1$$

 $\epsilon_{eff} = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 0}{2} \left[\frac{1}{\sqrt{1 + \frac{12b}{W}} + 0.04 \left(1 - \frac{W}{h}\right)^2} \right]$
 $Z_0 = \frac{60}{\sqrt{\epsilon_r}} \ln(\frac{8h}{W} + \frac{W}{4h})$
(i) $\frac{W}{h} = 5 > 1$

$$\epsilon_{eff} = \frac{\epsilon_r + 1}{2} + \frac{\epsilon_r - 1}{2} \left(\frac{1}{\sqrt{1 + \frac{12b}{W}}} \right)$$
$$Z_0 = \frac{120\pi}{\sqrt{\epsilon_r}} \left[\frac{1}{\left[\frac{W}{h} + 1.393 + 0.667 \ln(1.444 + \frac{W}{h}) \right]} \right]$$