Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination – May, 2016

Program/course: B.Tech CE + RP/B.Tech APE-Gas	Semester	: IV
Subject: Chemical Engineering Thermodynamics-II	Max. Marks	: 100
Code : GNEG-423	Duration	: 3 Hrs
No. of page/s: 2		

<u>PART –A (5 x 4 = 20 marks)</u> (Answer all questions)

Q. 1	How do you explain the significance of Virial Coefficients?	CO1
Q. 2	Derive an expression for H ^R from Redlich-Kwong EOS	CO2
Q. 3	Explain the graphical method of determination of partial molar properties for a binary solution	CO4
Q. 4	Differentiate between physical & chemical adsorptions	CO5
Q. 5	Differentiate between Dew point & Bubble Point . What is azeotrope ?	CO3

PART-B (5 x 8 = 40 marks)

0.($\frac{\mathbf{FART-D}\left(5 \times 6 - 40 \text{ marks}\right)}{\mathbf{F}_{\text{marks}}}$	
Q. 6	Excess Gibbs free energy of a binary liquid mixture is given by	
	$\mathbf{G}^{\mathrm{E}}/\mathbf{R}\mathbf{T} = x_1x_2 \left[\mathbf{A} + \mathbf{B} \left(x_1 - x_2\right)\right]$	
	Show that the activity coefficients are given by,	
	$\ln\gamma_1 = (A + 3B) x_2^2 - 4Bx_2^3$	
	$\ln \gamma_2 = (A - 3B) x_1^2 + 4Bx_1^3,$	CO4
	where A and B are functions of temperature only and are	
	dimensionless. Obtain Excess Gibbs free energy expression from	
	activity coefficients. Check the activity coefficient expressions satisfy	
	the Gibbs-Duhem equation [8]	
Q. 7	Deduce Gibbs – Duhem equation for a binary system ChemicalPotential and also in terms of activity & activity coefficient[4+4]	CO4
Q. 8	Define residual property and obtain the expression for residual properties of pure substances from Virial equation of state. [2+6]	CO2
Q. 9	Reported values for the virial coefficients of Isopropanol vapor at	

	200 ° C are,	
	$B = -388 \text{ cm}^3 \text{ mol}^{-1} \qquad C = -26,000 \text{ cm}^6 \text{ mol}^{-2}$	
	Calculate V and Z for Isopropanol vapor at 200 ° C and 10 bar by	CO1
	(i) The ideal gas equation [2]	
	(ii) Truncated second virial equation [3]	
	(iii) Truncated third virial equation [3]	
Q.10	(a) Define Henry's Law and mention proper assumptions. [4]	
	(b) Assuming that carbonated water contains only $CO_2 \& H_2O$, determine the compositions of vapor & liquid phases in a sealed can of "soda "and the pressure exerted on the can at $10^{\circ}C$. Henry's constant for CO_2 in water at $10^{\circ}C$ is about 990 bar. P2sat = 0.01227 bar @ 283.15 K. [4]	CO3

<u>PART-C (2 x 20 = marks)</u>

Q.1 1	Interpret the following models in thermodynamics[10](i) Van Laar's model[10](ii) Margules Two parameter model[10]	
	OR	CO3
	The system Acetone (1) / Acetonitrile (2) / Nitromethane (3) at 80 ° C and 110 kPa has the overall composition $z_1 = 0.45$, $z_2 = 0.35$, $z_3 = 0.20$. Assuming Rauolt's law is appropriate to this system. Determine L, V, x_i and y_i using flash calculations. [20]	
Q.1 2	At atmospheric pressure Acetone (1) and Chloroform (2) from an azeotrope that boils at 64.6 ° C and has a mole fraction of Acetone in the liquid of 0.335. The saturation vapour pressure of Acetone and Chloroform at 64.6 °C are 1.31. & 0.98 atm	
	Calculate the activity coefficients using modified Rauolt's law and Van Laar equation Excess Gibbs free energy and the azeotropic composition, system pressure. [20]	CO4
	OR	
	The excess Gibbs free energy of a binary liquid at T & P is given by, $G^{E}/RT = (-2.6x_1 - 1.8x_2) x_1 x_2$	
	(i) Find expression for Υ_1 and Υ_2	
	[10]	
	(ii) Show that the expression satisfies Gibbs-Duhem equation [10]	