UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Subject: Operation Research and Optimization Code : CSEG 389 No. of page/s:4

Max. Marks: 100Duration: 3 Hrs

Instructions:

SECTION A Section: A (Answer all questions, each question carries 4 Marks) 5X 4M=20M

S. No.		Marks	CO
Q 1.a	While solving an IPP any non-integer variable in the solution is picked up in order to i. Obtained the cut constraints. ii. Enter the solution iii. Leave the solution iv. None of the above	2	CO1
Q 1.b	Consider the problem of solving a linear programming problem with simplex method. Find which of the following statements is false with respect to the simplex method. The optimality conditions for the maximization and minimization problems are different in the simplex method. The feasibility conditions for the maximization and minimization problems are different in the simplex method. In a simplex method, the pivot element cannot be zero or negative In the simplex method, if the leaving variable does not correspond to the minimum ratio, at least one variable will definitely become negative in the next iteration 	2	C01
Q 2.a	The linear programming model for a transportation problem has constraints for supply at each and at each destination.	2	CO2
Q 2.b	A is the sequence of cells in the transportation table such that no cell appears more than once in the i. Loop ii. rim iii. degeneracy iv. (a) and (b) but not c	2	CO2
Q 3.a	Alternative solution exist of an LP model when i. One of the constraints is redundant ii. Objective function equation is parallel to one of the constrains iii. Two constrains are parallel	2	CO3

	iv. All of the above		
Q 3.b	For a minimization problem, the objective function coefficient for an artificial variable is		
	i. +M		
	ii. –M	•	
	iii1	2	CO3
	iv. +1		
Q 4.a	The solution to a transportation problem with m-rows and n-columns is degenerate if		
	number of positive allocations are		
	i. < m+n-1	•	
	ii. > m+n-1	2	CO4
	iii. = m+n-1		
	iv. =m*n		
Q 4.b	If there are n workers and n jobs there would be		
	i. n! solutions		
	ii. (n-1)! solutions	2	CO4
	iii. $(n!)^n$ solutions	2	04
	iv. n solutions		
Q 5.a	Which of the cost can vary with order size		
	i. Unit cost only		
	ii. Reorder cost only	•	
	iii. Holding cost only	2	CO5
	iv. All of the above		
Q 5.b	If EOQ is calculated but an order is then placed which is smaller than this , will the variable		
	cost		
	i. Increase		
	ii. Decrease	2	CO5
	iii. Either increase or decrease		
	iv. No change		
	SECTION B		
	Answer all questions, each question carries 8 Marks) 5X 8M=40M		
Q 6	A person requires 10, 12 and 12 units of chemicals A, B and C respectively for his garden. A typical liquid product contains 5, 2 and 1 units of A, B and C respectively per jar. On the		
	other hand a typical dry product contains 1,2 and 4 units of A,B and C per unit . If the liquid	Ø	
	product sells for ₹ 3 per jar and dry product ₹2 per carton. How many of each should be	8	CO1
	purchased to minimize the cost and meet the requirement. (Do not use graphical method).		
	Solve the dual of given primal problem to find the solution of primal.	8	CO2
Q 7	Solve the dual of given primar problem to find the solution of primar.		1
Q 7	- · · ·		
Q 7	Maximize $Z=5x_1+20x_2$		
Q 7	Maximize $Z=5x_1+20x_2$ Subject to		
Q 7	Maximize $Z=5x_1+20x_2$		

Q	Solve following IPP by using Gomory cutting plane algorithm <i>Maximize</i> $Z=2x_1+3$ <i>Subject</i> $i_x x_1+3x_2 \le 9, 3x_1+x_2 \le 7, x_1-x_2 \le 1, x_1, x_2 \ge 0 \land integer$									CO2, CO4
			all questions	<u>, each ques</u>		s 20 Mark	s) 2X 20	<u>M=40M</u>		
Q 10	Suppose that the demand for a product is 30 units per month and the items are withdrawn at a constant rate. The setup cost each time a production run is under taken to replenish inventory is \$15. The production cost is \$1 per item, and the inventory holding cost is \$0.30 per item per month. Assuming shortages are not allowed, determine how often to make a production run and what size it should be.							ish st is \$0.30	8	CO4
	How should		allocated, o	-				nan hour?		
		D E	7	9	9	7	12			
		C	10	7	2	2	2			
		В	3	9	18	13	6		8	CO3
		A	10	5	13	15	16			
			Ι	II	III	IV	V			
Q 9			puter has five tes to perform							
	What is the optimum shipping schedule? (Use VAM to find initial basic feasible solution.									
	Demand	4	4	6	8	8		_		
	F3	6	5	4	7	7	12		8	CO3
	F1 F2	4 5	2	3	2	6	8			
		M1	M2	M3	M4	M5	Supply			
Q 8			ree open-hea							
		≥0∧intege								

					I	3					
				Ι		II					
		А	1 2	-6 4		7 -5					
			3	-1		-2					
			4	-2		5					
			5	7		6					
Solve the followin	ig gam	ne									
			т	II	B III	IV	V	VI			
		I	I 4	2	0	$\frac{1}{2}$	<u>v</u>	1	1	10	CO5
	А	I	4	3	1	3	2	2	-	10	
	11	III	4	3	7	-5	1	2			
		IV	4	3	4	-1	2	2			
		V	4	3	3	-2	2	2			
At certain petrol p minutes between a exponential distrib the basis of this in	arrivals oution forma i. ii.	s. The tin and as n tion you What w	me inter nuch the are requ vould be ould be t	vals betw mean tim ired to ar the expect	veen ser ne taken nswer th cted ave	vices at t to servic e followi rage que	he petro e a unit ing ques ue lengt	l pump fol a 2 minute tions:	llow es. On	14	CO4
 The demand for an carrying charges o Calculate optimal orders. (6)	n item of 20%	is 8000 of avera	units per age inver	ntory cost	t and ore	dering co	st is Rs.	12.50 per	order.	6	CO4

Name:	
Enrolment No:	