UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: modeling and simulation of digital systems Program: M.Tech CSE Time: 03 hrs.

Semester: II

Max. Marks: 100

Instructions: Attempt all Questions. There are no choices in this question paper.

S. No.		Marks	CO
1	Define a system. Take appropriate examples to state and describe various components of a system.	4	CO1
2	What is the significance of micro and macro approaches in a system study?	4	CO1
3	State the steps of mid-square method for random number generation. For a seed 3456 generate two $U(0,1)$ random numbers. What are the major drawbacks of Mid Square method?	4	CO2, CO5
4	For a given Multiplicative Congruential Generator, Identify whether it will have full period or not. a) Z0=28, a=35, m=7 b) Z0=33, a=21, m=7	4	CO2
5	Draw a causal loop of a 2 nd order negative Feedback system explaining its pattern of behavior.	4	CO2, CO3
	SECTION B		
6	 Why is pseudo random numbers important in simulations? Generate first three random numbers using combined linear congruential method. Take following two multiplicative generators. a) Z0=28, a=35, m=7 b) Z0=33, a=21, m=13 What will be the maximum possible period of this generator? 	8	CO2,C O3
7	Explain the steps of event step and time step simulation via a flowchart. What do you mean by Future Event Lists? What is their significance in Simulation?	8	CO2
8	A given climate system has two random variables, X (days) and Y(temperature). The scientific readings recorded earlier gave following sets for the above variables.	8	CO2,C O3,CO 4
	X 50 59 57 65 68 55 56 59 61		
	Y 11 15 11.5 14 19 20 21 18 12		

SECTION A

	A model developed is represented as Z(comfort)=X*Y/30. Use empirical continuous distribution to perform inverse transform and generate 2 variates for X and Y. Take U(0,1) random numbers as 0.356, 0.548.				
9	Explain in detail various queuing disciplines and queuing models stating appropriate examples. What are the factors determining the characteristics of a queue? What are various measures of performance in queuing systems?	8	CO2,C O3,CO 4		
10	 a) A random variable X follows weibull pattern (α=0.8, β=4). Using Inverse transform method, Generate variates for R=(0.12 and 0.56). b) A random variable X follows exponential pattern (λ=9). Using Inverse transform method, Generate variates for R=(0.72 and .46). c) A random variable X follows uniform pattern (a=100, b=400). Using Inverse transform method, Generate variates for R=(0.12 and .56). 	8	CO2,C O3		
SECTION-C					
	Long answer Questions. Detailed discussion is required.				
11	Explain the process of modelling via 'structuring' and supplying data. Make mathematical model of 'Quality of friendships in a social networking". Use all the steps of modelling with proper description arriving to a mathematical model. Explain how this model will be used in simulation.	20	CO2,C O3,CO 4		
12	Explain in detail the following:a. Steps in Input Modellingb. Model verification and validation.c. Discrete event simulation.	20	CO2,C O3,CO 4		