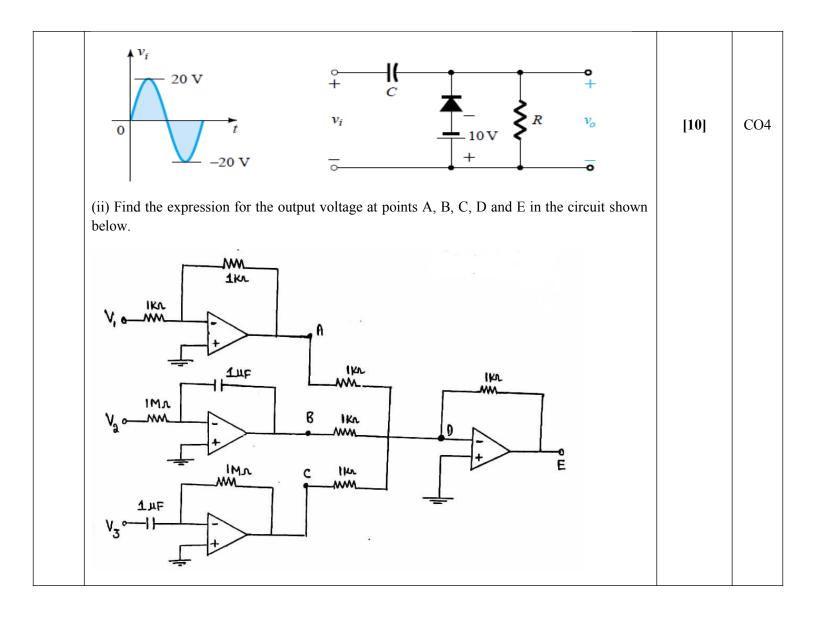
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018

Course: Basic Electronics Engineering Program: B.Tech (CIT: BAO, ECRA, IFM, BFSI) Time: 03 hrs.

Semester: II


Max. Marks: 100

Instructions:

- 1. Draw suitable circuit diagrams wherever required to justify your answer.
- 2. Your answer should be concise and to the point.

	Section A (All questions are compulsory)		
1.	Explain the effect of temperature on the Zener and avalanche breakdown voltage.	[4]	CO1
2.	Write down the steps for determining the output waveform of unbiased positive Clampers.	[4]	CO1
3.	In a transistor amplifier, $\beta = 50$, load resistance $R_L = 6k\Omega$ and input resistance $R_{in} = 0.6$ k Ω . Determine its voltage amplification.	[4]	CO3
4.	What do you mean by the term input offset voltage and output offset voltage.	[4]	CO1
5.	An amplifier operating over the frequency range from 18 to 20 MHz has a $10k\Omega$ input resistor. What is the rms noise voltage at the input to this amplifier if the ambient temperature is 27° C?	[4]	CO3
	Section B (All questions are compulsory. Question no. 9 has internal choice)		1
	(ii) A Ge p-n junction at 300 K has the following parameters $N_D = 5 \times 10^{18} / \text{ cm}^3$, $N_A = 6 \times 10^{16} / \text{ cm}^3$, $n_i = 1.5 \times 10^{10} / \text{ cm}^3$. Calculate the minority electron density in the P – region.	[6+4]	CO3
7.	Explain the classification of amplifiers on the basis of position of the operating point on load line. Which of the transistor amplifier is actually a half-wave rectifier?	[8+2]	CO2
8.	Discuss the Amplitude Modulation superhetrodyne receiver by explaining the function of each stage with the help of a suitable block diagram.	[10]	CO1

9.	Explain the construction and working of depletion mode of depletion type MOSFET with the help of a suitable diagram.		
	OR	[10]	CO2
	Explain the construction and working of enhancement mode of depletion type MOSFET with the help of a suitable diagram.		
	Section C (Question 10 is compulsory. Question 11 has internal choices.)		
10.(a)	What do you understand by the term noise? Discuss in detail the different types of noises that occur in communication system.	[3+7]	CO2
10.(b)	Draw the circuit diagram of Operational amplifier as an Integrator and derive an expression for the output voltage. Design an adder circuit using Operational amplifier to give the output $V_o = -(3V_1 + 4V_2 + 5V_3)$ where V ₁ , V ₂ and V ₃ are the inputs and R _f = 20kΩ	[5 + 5]	CO3
11.(a)	(i) Solve the given clipper circuit to draw its output waveform assuming diode terminal voltage as $V_{\text{T}}.$	[10]	CO3
	V_{in} V_{in} V_{in} V_{1} V_{2} V_{out}		
	(ii) A four stage Operational amplifier circuit is required to provide voltage gains of +21, -15, +11 and -24. Design the Op-amp circuit. Use a 240 k Ω feedback resistor for all the four circuits. What output voltage will result for an input of 160 μ V?	{10]	CO4
	OR		
11.(b)	(i) Solve the given clamper network to draw its output waveform.	[10]	CO3

