UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Program: B.TECH(ECE, Chem-I\&II, ASE,Electrical, PSE, ASE-AVE, APE-Gas-I \&II)	Semester - II
Subject (Course): Basic Electrical \& Electronics Engineering	Max. Marks: 100
Course Code : ECEG1001	Duration :3 Hrs
No. of page/s: 04	

Note : All questions are compulsory for Section A and B ,

SECTION A			
1.	An electrically driven pump lifts $80 \mathrm{~m}^{3}$ of water per minute through a height of 12 m . Allowing an overall efficiency of 70% for the motor and pump, calculate the input power to motor . If the pump is in operation for an average for an average of 2 hours per day for 30 days, calculate the energy consumption in kWh and the cost of energy at the rate of Rs 3.75 per kWh . Assume of $1 \mathrm{~m}^{3}$ of water has a mass of 1000 kg and $\mathrm{g}=9.81$ $\mathrm{m} / \mathrm{s}^{2}$.	[4]	CO1
2.	A 4 - pole DC Shunt Generator running at $1,500 \mathrm{rpm}$ has an armature with 90 slots having 6 conductors per slot. The flux per pole is $6 \times 10^{-2} \mathrm{~Wb}$. Determine the induced emf of the DC Generator if the coils are lap connected. If the current per conductor is 100 A , determine the electrical power output of the machine.	[4]	CO2
3.	Explain all the types of filters used in DC-power supply design with neat sketch	[4]	$\mathrm{CO3}$
4.	What is the difference between ordinary transformer and Center tapped transformer. Mention the parameters that get changed when using center tapped transformer	[4]	CO3
5	(I) Find the equivalent resistance between points X and Y of Fig. 1 Fig. 1	[2+2]	$\begin{gathered} \text { CO1, } \\ \text { CO3 } \end{gathered}$

	(II) Find the output voltage and Diode current for the following network shown in Fig 2. Fig. 2		
	SECTION B		
6.	A circuit having a resistance of 6Ω and inductive reactance of 8Ω is connected in parallel with another circuit having a resistance of 8Ω and a capacitive reactance of 6Ω . The parallel circuit is connected across $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply . Calculate : (i) supply current (ii) power factor of the whole circuit (iii) power consumed . (iv) the resistance and reactance of a series circuit which will take the same current at the same p.f. as the parallel circuit .	[8]	CO1
7.	(a) Why is a parallel circuit arrangement best for house wiring? (b) What are the disadvantages of poor power factor in a.c circuit. How we can improve the power factor for any installation/equipment?	[4+4]	CO1,
8.	A base current of $50 \mu A$ is applied to the transistor as shown in figure 3 below and a voltage of 5 V is dropped across \boldsymbol{R}_{C}. Calculate α for the transistor. Fig 3	[8]	CO3
9.	Why CE-Amplifier is preferred over CC and CB? Explain working of CB-Configuration Transistor (NPN), draw the input and output characteristics and mention its applications	[8]	$\mathrm{CO3}$

10.	(a) Give the analogy between electric and magnetic circuits . What are the major points of differences between them . (b) For a particular NPN transistor with Emitter bias $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\beta=100$, $R_{B}=430 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{C}}=2 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{E}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{BB}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}$ find $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and V_{CE}.	[4+4]	$\begin{gathered} \mathrm{CO} 2, \\ \mathrm{CO} \end{gathered}$
	SECTION C (Attempt any Two Questions)	2×20	
11.	(a) Using Thevenin's Theorem, determine the current through 5Ω resistance connected between terminal A and D in the network of Fig 4 below Fig 4 (b) The iron loss of a $80 \mathrm{kVA}, 1000 / 250 \mathrm{~V}$, single phase , 50 Hz transformer is 800 W . The copper loss when primary carries 50 A is 400 W . Estimate : (i) Area of cross - section of limb if working flux density is $1 \mathrm{wb} / \mathrm{m} 2$ and there are 1000 turns on the primary , (ii) Current ratio (primary and current) (iii) Efficiency at full load and 0.8 power factor lagging, (iv) Efficiency for a load when copper loss will be equal to iron loss and power factor remains 0.8 lagging	[10,10]	CO 32
12	(a) Derive the output equation from the given circuit and implement the same by using logic gates. Fig 5	[10,10]	$\mathrm{CO4}$

	(b) Implement Full adder by using two Half adders and realize the Sum and $\mathrm{C}_{\text {out }}$ outputs by using NAND gates.		
13.	(a) Explain with reference to three-phase, the terms 'Phase sequence', and 'balanced load'. What will happen if the phase sequence of the supply is changed for 3-phase induction motor . (b) A balanced three-phase star connected load is supplied from a three-phase, 400 V , 50 Hz supply. The resistance of each coil is 6Ω and reactance is 8Ω. Find the value of phase current, line current and the total power consumed. (c) Design a Bridge rectifier circuit for which $\mathrm{V}_{\mathrm{rms}}$ is given as 81.3 V with turn's ratio 10:1. Find the DC output Voltage V_{DC}, Maximum Value of $A C$ input V_{m}, Primary \& secondary Voltages of Transformer $\mathrm{V}_{1} \& \mathrm{~V}_{2}$ and Ripple factor. Consider the load resistor to be $1 \mathrm{~K} \Omega$.	$\begin{gathered} (6+4+ \\ 10] \end{gathered}$	$\begin{gathered} \mathrm{CO2} \\ \mathrm{CO4} \end{gathered}$

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Program: B.TECH(ECE, Chem-I\&II, ASE,Electrical, PSE, ASE-AVE, APE-Gas-I \&II) Semester - II Subject (Course): Basic Electrical \& Electronics Engineering Max. Marks: 100 Course Code : ECEG1001 Duration : $\mathbf{3} \mathbf{~ H r s}$ No. of page/s: 04

Note : All questions are compulsory for Section A and B,

SECTION A			
1.	An electric crane raises a load of 5 tonnes to a height of 30 meters in one minute . Calculate the HP (metric) of the motor and the current taken from a 230 v supply if the efficiency of the crane is 75% and of the motor is 85%.	[4]	CO1
2.	(a) A $3300 / 300 \mathrm{~V}$ single - phase 300 kVA transformer has 1100 primary turns . Find: (i) Transformation ratio (b) secondary turns (c) Voltage/turn (d) Secondary turn when it supplies a load of 200 kW at 0.8 power factor lagging	[4]	$\mathrm{CO2}$
3.	Explain all the blocks used in DC-Power supply design with neat sketch.	[4]	CO 3
4.	What is the difference between ordinary transformer and Center tapped transformer. Mention the parameters that get changed when using center tapped transformer.	[4]	
5	(I) Which of the following law/rule can be used to determine the direction of rotation of D.C. motor ? (a) Lenz's law (b) Fleming's Right Hand Rule (c) Faradays's Laws (d) Fleming's Left Hand Rule (II) The transformer ratings are usually expressed in terms of (a) volts (b) amperes (c) kW (d) kVA (III) Find I_{D}, V_{D} and V_{R} for the following circuit and also determine the value of the Load resistor that results in 10 mA diode current when E is considered as 7 V .	[1+1+2]	$\begin{gathered} \text { CO1, } \\ 2,3 \end{gathered}$

	Fig 3		
10.	(a) Derive an expression for induced e.m.f. in a transformer in terms of frequency, the maximum value of flux and the number of turns on the windings (b) What is PN-junction Diode? Discuss the behavior of a PN junction under forward and reverse biasing and also sketch V-I characteristics of a PN Junction.	[4+4]	CO2
	SECTION C (Attempt any Two Questions)		
11.	(a) A mercury vapour lamp unit consists of a $25 \mu \mathrm{~F}$ condenser in parallel with a series circuit containing the resistive lamp and reactor of negligible resistance. The whole unit takes 400 W at $240 \mathrm{~V}, 50 \mathrm{~Hz}$ and unity power factor. What is the voltage across the lamp? (b) Find the value of adjustable R which results in maximum power transfer across the terminal $\mathrm{A}-\mathrm{B}$ of the circuit show in Fig 4 below and determine the maximum power . Fig 4	[10+10]	$\begin{gathered} \text { CO1, } \\ 2 \end{gathered}$
12	A) Derive the Boolean equations for F1 and F2, minimize the equations by using Boolean laws and Design the circuit by using logic gates.		CO4

	A B C F_{1} 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1A B C F_{2} 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 B) Implement a Full adder by using two Half adders and realize the Sum and $\mathrm{C}_{\text {out }}$ outputs by using NAND gates.	
13.	(a) Explain the principle of operation of dc motors, What is back emf in dc motors ? What is its significance ? (b) Convert the following $\begin{array}{ll} \text { i. } & (\mathrm{F} 67.5 \mathrm{~A})_{16}=(\quad)_{8} \\ \text { ii. } & (101011.1001)_{2}=()_{10} \\ \text { iii. } & (9309.124)_{10}=()_{16} \\ \text { iv. } & (101011)_{8}=()_{2} \\ \text { v. } & (679)_{8}=()_{10} \end{array}$ (c). For a particular NPN transistor with Emitter bias $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\beta=200, \mathrm{R}_{\mathrm{B}}=50$ $\mathrm{K} \Omega, \mathrm{R}_{\mathrm{C}}=300 \Omega, \mathrm{R}_{\mathrm{E}}=10 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{BB}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}$ find $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and V_{CE}	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO4} \end{aligned}$

