UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018 Programme: B. Tech. (ASE; ASE+AVE) Course Name: Applied Numerical Methods Course Code: MATH 301 No. of page/s: 02

Semester: VI Max. Marks : 100 Duration : 3 Hrs

Instructions:

Attempt all questions from **Section A** (each carrying 5 marks); all questions from **Section B** (each carrying 8 marks) and all questions from **Section C** (carrying 20 marks).

			(Atte	Section A mpt all ques	tions)			
1.	Obtain the first term of the series whose second and subsequent terms are $8, 3, 0, -1, 0$.					[5]	CO1	
2.	Using Newton	n's divided di 1 14	fference formu 2 15	lla, find the n 4 5	nissing values	from the table: 6 9	[5]	CO1
3.	3. Find the real root of the equation $x = e^{-x}$ using Newton-Raphson method correct up to 4 decimal places.						[5]	CO3
4.	If $\frac{dy}{dx} = \frac{y-x}{y+x}$, find the value of y at $x = 0.1$ using Picard's method. Given that $y(0) = 1$.					[5]	CO5	
	SECTION B (Q5-Q8 are compulsory and Q9 has internal choice)							
5.		4 6 8.5460 5.07 s formula to fin	8 53 6.4632 d the value of <i>y</i>			4 986	[8]	CO1
6.	Find all the ro	pots of the equ	uation $x^4 - 3x$	x + 1 = 0 by	/ Graeffe's me	ethod.	[8]	CO3

7.	Solve equations $27x + 6y - z = 85$; $x + y + 54z = 110$; $6x + 15y + 2z = 72$ using Gauss-Seidel method. Use only four iterations.							CO4
8.	If $f(x) = (2x + 1)(2x + 3)(2x + 5) \dots \dots (2x + 15)$, find the value of $\Delta^4 f(x)$.							CO1
9.	Using Euler's modified method, obtain a solution of the equation $\frac{dy}{dx} = \log_{10}(x + y)$ with initial condition $y(0) = 1$ for $x = 0.2$ correct to four decimal places (take $h = 0.2$). OR Using Runge-Kutta method of fourth order, solve for y at $x = 0.2$ from $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given $y(0) = 1$ (take $h = 0.2$).							CO5
SECTION C (Q10 is compulsory and Q11A, Q11B have internal choices)								
10.	Solve the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -10(x^2 + y^2 + 10)$ over the square mesh with sides $x = 0$, $y = 0$, $x = 3$, $y = 3$ with $u = 0$ on the boundary and mesh length is 1.						[20]	CO6
11.A	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5$, $t \ge 0$ given that $u(x, 0) = 20$, $u(0, t) = 0$, u(5, t) = 100. Compute u for one time step with $h = 1$ by Crank-Nicolson method. OR Solve the boundary value problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ under the conditions $u(0, t) = u(1, t) = 0$ and $u(x, 0) = \sin(\pi x)$, $0 \le x \le 1$ using Schmidt method for five steps in t direction (take $h = 0.2$ and $\lambda = \frac{1}{2}$).						[10]	CO6
11.B	The following date gives the velo seconds. Find the initial accelerat Time t (Sec) Velocity $v(m/sec)$ Compute the value of $\int_{0.2}^{1.4} (\sin x - (\text{Take seven ordinates}))$	tion using to 0	the entire 5 3	data: 10 14	15 69	20 228	[10]	CO2

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018 Programme: B. Tech. (ASE; ASE+AVE) Course Name: Applied Numerical Methods Course Code: MATH 301 No. of page/s: 02

Semester: VI Max. Marks : 100 Duration : 3 Hrs

Instructions:

Attempt all questions from **Section A** (each carrying 5 marks); all questions from **Section B** (each carrying 8 marks) and all questions from **Section C** (carrying 20 marks).

			(Atte	Section A mpt all quest	ions)			
1.	If $\Delta f(x) = f(x+h) - f(x)$, then evaluate $\Delta^{10}[(1-ax)(1-bx^2)(1-cx^3)(1-dx^4)]$ for $h = 10$.						[5]	CO1
2.	Taking reference							
	x		1.5	3		6	[5]	CO1
	f(x)		-0.25	2		20		
3.	Using Netwon-Raphson method, derive the general formula for finding p^{th} root of a positive real number.							CO3
4.	Using Picard's method, obtain the 2 nd approximation, if $\frac{dy}{dx} = 1 + xy$ with $y(0) = 2$.						ith [5]	CO5
		(Q5-Q8		SECTION B sory and Q9 h	as internal c	hoice)	I	
	Probability distri							
5.	x	0.2	0.6	1	1.4	1.8	[8]	CO1
	p(x)	0.39104	0.33332	0.24197	0.14973	0.07895		
	Using Bessel's formula, find the value of $p(x)$ for $x = 1.2$.							

6.	Using Horner's method, find the positive root of $x^3 + 9x^2 - 18 = 0$.	[8]	CO3
7.	Solve equations $27x + 6y - z = 85$; $x + y + 54z = 110$; $6x + 15y + 2z = 72$ using Gauss-Seidel method. Use only four iterations.	[8]	CO4
8.	A second degree polynomial passes through (0, 1), (1, 3), (2, 7), (3, 13). Find the polynomial.	[8]	CO1
9.	Using Euler's modified method, obtain a solution of the equation $\frac{dy}{dx} = x + \sqrt{y} $ with initial condition $y(0) = 1$ for $x = 0.2$ correct to three decimal places (take $h = 0.2$). OR Using Runge-Kutta method of fourth order, solve for y at $x = 1.2$ from $\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}$ given $y(1) = 0$ (take $h = 0.2$).	[8]	CO5
	L		
10.	Solve $u_{xx} + u_{yy} = 0$ in $0 \le x \le 4$, $0 \le y \le 4$, given that $u(0, y) = 0$; $u(4, y) = 8 + 2y$; $u(x, 0) = \frac{1}{2}x^2$ and $u(x, 4) = x^2$. Take $h = k = 1$ and obtain the result using Liebmann's iteration formula (apply two iterations only).	[20]	CO6
11.A	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5$, $t \ge 0$ given that $u(x, 0) = 20$, $u(0, t) = 0$, u(5, t) = 100. Compute u for one time step with $h = 1$ by Crank-Nicolson method. OR Solve the boundary value problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ under the conditions $u(0, t) = u(1, t) = 0$ and $u(x, 0) = \sin(\pi x)$, $0 \le x \le 1$ using Schmidt method for five steps in t direction. (Take $h = 0.2$ and $\lambda = \frac{1}{2}$)	[10]	CO6
11.B	Using Newton forward interpolation formula, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = 6$ given that $ \frac{x 4.5 5 5.5 6 6.5 7.0 7.5}{y 9.69 12.90 16.71 21.18 26.37 32.34 39.15} $ OR Evaluate $\int_0^1 \frac{dx}{1+x}$ by dividing the interval into 8 equal parts using Simpson's rule. Hence evaluate $\log_e 2$ approximately.	[10]	CO2