UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018
Programme: B. Tech. (ASE; ASE+AVE)
Course Name: Applied Numerical Methods
Course Code: MATH 301

Semester: VI
Max. Marks : 100
Duration : 3 Hrs

No. of page/s: 02

Instructions:

Attempt all questions from Section \mathbf{A} (each carrying 5 marks); all questions from Section \mathbf{B} (each carrying 8 marks) and all questions from Section C (carrying 20 marks).

Section A
 (Attempt all questions)

1.	Obtain the first term of the series whose second and subsequent terms are $8,3,0,-1,0$.						[5]	CO1
2.	Using Newton's divided difference formula, find the missing values from the table:						[5]	CO1
	x	1	2	4	5	6		
	y	14	15	5		9		
3.	Find the real root of the equation $x=e^{-x}$ using Newton-Raphson method correct up to 4 decimal places.						[5]	CO 3
4.	If $\frac{d y}{d x}=\frac{y-x}{y+x}$, find the value of y at $x=0.1$ using Picard's method. Given that $y(0)=1$.						[5]	CO5

(Q5-Q8 are compulsory and Q9 has internal choice)

5.	Given that							[8]	CO1
	x	4	6	8	10	12	14		
	y	3.5460	5.0753	6.4632	7.7217	8.8633	9.8986		
	Apply Bessel's formula to find the value of y at $x=9$.								
6.	Find all the roots of the equation $x^{4}-3 x+1=0$ by Graeffe's method.							[8]	CO 3

7.	Solve equations $27 x+6 y-z=85 ; x+y+54 z=110 ; \quad 6 x+15 y+2 z=72$ using Gauss-Seidel method. Use only four iterations.						[8]	$\mathrm{CO4}$
8.	If $f(x)=(2 x+1)(2 x+3)(2 x+5) \ldots \ldots \ldots(2 x+15)$, find the value of $\Delta^{4} f(x)$.						[8]	$\mathrm{CO1}$
9.	Using Euler's modified method, obtain a solution of the equation $\frac{d y}{d x}=\log _{10}(x+y)$ with initial condition $y(0)=1$ for $x=0.2$ correct to four decimal places (take $h=0.2$). OR Using Runge-Kutta method of fourth order, solve for y at $x=0.2$ from $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ given $y(0)=1$ (take $h=0.2$).						[8]	$\mathrm{CO5}$
SECTION C(Q10 is compulsory and Q11A, Q11B have internal choices)								
10.	Solve the equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0, y=0, x=3, y=3$ with $u=0$ on the boundary and mesh length is 1.						[20]	CO6
11.A	Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ in $0<x<5, t \geq 0$ given that $u(x, 0)=20, u(0, t)=0$, $u(5, t)=100$. Compute u for one time step with $h=1$ by Crank-Nicolson method. OR Solve the boundary value problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ under the conditions $u(0, t)=u(1, t)=0$ and $u(x, 0)=\sin (\pi x), \quad 0 \leq x \leq 1$ using Schmidt method for five steps in t direction (take $h=0.2$ and $\lambda=\frac{1}{2}$).						[10]	CO6
11.B	The following date gives the velocity of a particle for 20 seconds at an interval of 5 seconds. Find the initial acceleration using the entire data:						[10]	
	Time t (Sec)	0	5	10	15	20		
	Velocity $v(\mathrm{~m} / \mathrm{sec})$	0	3	14	69	228		CO 2
	OR Compute the value of $\int_{0.2}^{1.4}\left(\sin x-\log _{e} x+e^{x}\right) d x$ using Simpsons's three eight rule (Take seven ordinates).							

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018
Programme: B. Tech. (ASE; ASE+AVE)
Course Name: Applied Numerical Methods
Course Code: MATH 301

Semester: VI
Max. Marks : 100
Duration : 3 Hrs

No. of page/s: 02

Instructions:

Attempt all questions from Section A (each carrying 5 marks); all questions from Section \mathbf{B} (each carrying 8 marks) and all questions from Section C (carrying 20 marks).

Section A
 (Attempt all questions)

6.	Using Horner's method, find the positive root of $x^{3}+9 x^{2}-18=0$.								[8]	CO 3
7.	Solve equations $27 x+6 y-z=85 ; x+y+54 z=110 ; \quad 6 x+15 y+2 z=72$ using Gauss-Seidel method. Use only four iterations.								[8]	CO4
8.	A second degree polynomial passes through $(0,1),(1,3),(2,7),(3,13)$. Find the polynomial.								[8]	CO1
9.	Using Euler's modified method, obtain a solution of the equation $\frac{d y}{d x}=x+\|\sqrt{y}\|$ with initial condition $y(0)=1$ for $x=0.2$ correct to three decimal places (take $h=0.2$). OR Using Runge-Kutta method of fourth order, solve for y at $x=1.2$ from $\frac{d y}{d x}=\frac{2 x y+e^{x}}{x^{2}+x e^{x}}$ given $y(1)=0($ take $h=0.2)$.								[8]	$\mathrm{CO5}$
SECTION C(Q10 is compulsory and Q11A, Q11B have internal choices)										
10.	Solve $u_{x x}+u_{y y}=0$ in $0 \leq x \leq 4, \quad 0 \leq y \leq 4$, given that $u(0, y)=0$; $u(4, y)=8+2 y ; \quad u(x, 0)=\frac{1}{2} x^{2} \quad$ and $u(x, 4)=x^{2}$. Take $h=k=1 \quad$ and obtain the result using Liebmann's iteration formula (apply two iterations only).								[20]	CO6
11.A	Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ in $0<x<5, t \geq 0$ given that $u(x, 0)=20, u(0, t)=0$, $u(5, t)=100$. Compute u for one time step with $h=1$ by Crank-Nicolson method. OR Solve the boundary value problem $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ under the conditions $u(0, t)=u(1, t)=0$ and $u(x, 0)=\sin (\pi x), \quad 0 \leq x \leq 1$ using Schmidt method for five steps in t direction. (Take $h=0.2$ and $\lambda=\frac{1}{2}$)								[10]	CO6
11.B	Using Newton forward interpolation formula, find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=6$ given that								[10]	
	x	4.5	5	5.5	6	6.5	7.0	7.5		
	y	9.69	12.90	16.71	21.18	26.37	32.34	39.15		CO 2
	OR Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ by dividing the interval into 8 equal parts using Simpson's rule. Hence evaluate $\log _{e} 2$ approximately.									

