

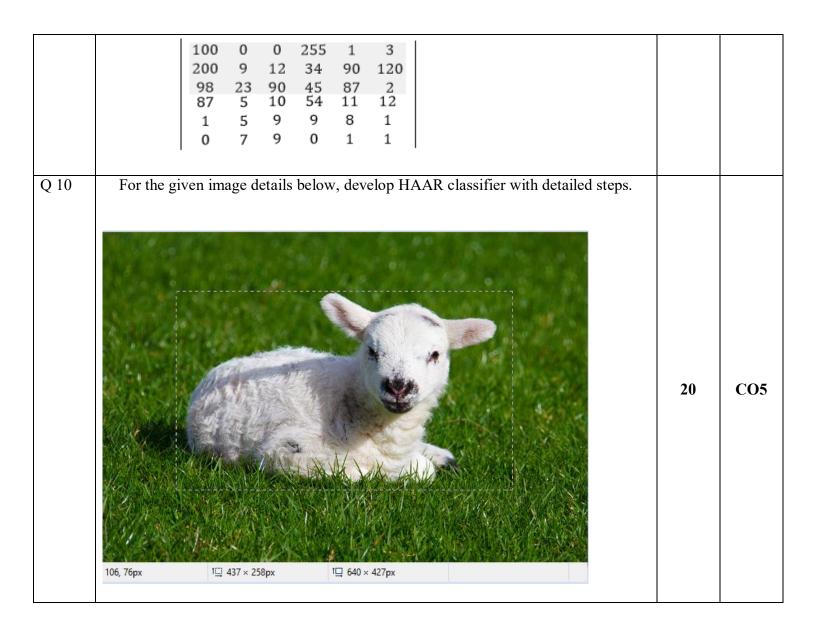
Enrolment No:

Semester: II

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: IMAGE PROCESSING & MACHINE VISION

Program: M.TECH. A & R


Time: 03 hrs. Max. Marks: 100

CODE : ECEG 7004

Instructions: ATTEMPT ALL QUESTIONS

SECTION A (4Q X 5 Marks = 20 Marks)

S. No.		Marks	CO
Q 1	Explain the following:		
	(i) Image restoration	5	CO1
	(ii) Segmentation		
Q 2	Explain relational structures with the help of Quadtrees.	5	CO3
Q 3	Discuss Inverse filtering.	5	CO4
Q 4	Discuss 2-component image model in detail.	5	CO2
	SECTION B (4Q X 10 Marks = 40 Marks)	•	
Q 5	Explain topological data structures with the help of RAG (region adjacency graph).	10	CO3
Q 6	Explain following relational structures: (i) Pyramids (ii) Quadtrees	10	CO4
Q 7	Explain different edge detector operators. (atleast 5 operators 3 x 3 size)	10	CO5
Q 8	Name the following image operator application and discuss in detail. $\frac{1}{9}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}, \frac{1}{10}\begin{bmatrix}1&1&1\\1&2&1\\1&1&1\end{bmatrix}$	10	CO1
	SECTION-C (2Q X 2 = 40 Marks)	l	
Q 9	For the given image, apply any 3 x 3 edge operator.	20	CO4

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: IMAGE PROCESSING & MACHINE VISION

Semester: II

Program: M.TECH. A & R

Time: 03 hrs. Max. Marks: 100

CODE: ECEG 7004

Instructions: ATTEMPT ALL QUESTIONS

SECTION A	(4Q X 5 Marks = 20 Marks)
-----------	---------------------------

S. No.		Marks	CO
Q 1	Explain different types of image pre-processing in detail.	5	CO1
Q 2	Discuss Homomorphic filtering and compare it with other types of filtering.	5	CO2
Q 3	Discuss following for statistical pattern recognition. (i) Nearest neighbor technique (ii) Support vector machines	5	CO3
Q 4	Explain Clustering with the help of a 2-d feature space plot.	5	CO4
	SECTION B (4Q X 10 Marks = 40 Marks)	<u>, </u>	
Q 5	Derive following correlation expression for template matching. $Corr_T(x) = \sum_{i=1}^{r_T} \sum_{j=1}^{c_T} (T_{i,j} I_{x_a+i,x_b+j})$	10	CO3
Q 6	Derive RAG (regions adjacency graph) for following:	10	CO2

Q 7	Break the following 5 x 5 operator into two separate operators of 1 x 5 and 5 x 1 size. $\begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$	10	CO3
Q 8	Derive expression for Canny edge detection algorithm.	10	CO1
	SECTION-C (2Q X 2 = 40 Marks)		
Q 9	(i) For the given image, apply any 3 x 3 edge operator. 100 0 0 255 1 3 200 9 12 34 90 120 98 23 90 45 87 2 87 5 10 54 11 12 1 5 9 9 8 1 0 7 9 0 1 1	20	CO5
Q 10	(i) Derive chain code for following: 8-connected 3 2 1 5 6	10	CO4
	(i) Explain frequency domain local pre-processing in detail, and derive appropriate image processing for following image transformation.	10	