Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Program: B.Tech. Mining (Indian) Subject (Course): Geostatistics Course Code : GSEG 327 No. of page/s: 03 Semester – VI Max. Marks : 100 Duration : 3 Hrs

	npt all questions from Section A (each carrying 4 marks); attempt all questions from Section R (each carrying 20 marks).	ection B (each
	Section A (Attempt all questions)		
1.	In 256 sets of 12 tosses of a coin, in how many cases one can expect 8 heads and 4 tails.	[4]	CO1
2.	The two regression equations of the variables x and y are $x = 19.13 - 0.87y$ and $y = 11.64 - 0.50x$. Find the correlation coefficient between x and y.	[4]	CO1
3.	Let $z_1, z_2,, z_n$ are measurements at n locations. An estimate for z at a point x_0 is required. Let $d_1, d_2,, d_n$ are distance of the point x_0 from the other n locations. A variant of inverse distance interpolation technique is defined as $z(x_0) = \frac{w_1 z_1 + w_2 z_2 + \dots + w_n z_n}{w_1 + w_2 + \dots + w_n}$ Where $w_i = \frac{1}{d_i^2}$. Use this interpolation method to estimate the missing value $z(x_0)$ at x_0 . Use the following information. $\boxed{\begin{array}{c c} Distance from x_0 & Value z_i \\ \hline x_1 & 4 & 50 \\ \hline x_2 & 2 & 30 \\ \hline x_3 & 6 & 52 \end{array}}$	[4]	CO2
4.	Write the definition of the anisotropic variogram.	[4]	CO3
5	Prove that the simple kriging is an exact estimator.	[4]	CO4

	(06-09)		SECTION I ory and Q1		al choice)		
6.	Find the mean and standard items are under 35 and 89% $P(Z \le 1.23) = 0.89$, where distribution.	deviation of are under 6	a normal di 63. Given the	stribution in at, $P(Z \leq -$	which 7% of the $1.48) = 0.07$ and	[8]	CO1
7.	8 2	data given b 3 5 2 10 11	elow on a rec 5 4 3 9 3	ctangular gr 5 5 7 9 3	id. 5 17 7 10 4	[8]	CO3
8.	For the data given above, Spherical, Exponential and nugget as 0.			-	-	[8]	CO3
9	Let $\gamma(x_i - x_j)$ represents the variogram between random variables $Z(x_i)$ and $Z(x_j)$ at two locations x_i and x_j , respectively. For a location x_0 , establish the relation $\gamma(x_i - x_j) = \gamma(x_i - x_0) + \gamma(x_j - x_0) - Cov[Z(x_i) - Z(x_0), Z(x_i) - Z(x_0)]$					[8]	CO4

	Find the function to be optimized for computing the simple kriging weights.		
10.	OR Find the function to be optimized for computing the ordinary kriging weights.	[8]	CO4
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)		I
11.A	State and prove a necessary and sufficient condition for universal kriging estimator to be unbiased. Also show that, the un-biasedness conditions leads to $\sum_{i=1}^{n} \lambda_i = 1$.	[10]	CO4
11.B	Write the ordinary kriging system of equations in terms of the variogram function. Using the relationship between the variogram function and the covariogram function, transform the system of equations in terms of covariance functions.	[10]	CO4
12.A	x y $Z(x_i)$ x_1 102040 x_2 30280130 x_3 25013090Use simple kriging to estimate the value of $Z(x_0)$ at $x_0 = (180, 120)$. Given $E[Z(x)] = 110$ and the covariance function as $2000 * \exp(\frac{-h}{250})$ OR $\overline{x_1}$ \overline{y} $\overline{Z(x_i)}$ $\overline{x_1}$ 102040 x_2 30280130Use ordinary kriging to estimate the value of $Z(x_0)$ at $x_0 = (180, 120)$. Given the covariance function as $2000 * \exp(\frac{-h}{250})$.	[10]	CO4
12.B	 (i) If the measurement is repeated at a location twice, then show that it is impossible to run kriging algorithm. (ii) Find the optimum value of the function f(x, y, z) subjected to condition g(x, y, z) = 0 and h(x, y, z) = 0. OR Find the simple kriging system of equations and use the solution to find the simple kriging estimation error variance. 	[10]	CO4