Name:	
Enrolment No:	UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, May 2018

Course: Flight Instrumentation and Data Acquisition System Semester: II Program: M. Tech ASE+UAV
Time: 03 hrs.
Max. Marks: 100
Instructions: Make use of sketches/plots to elaborate your answer. Brief and to the point answers are expected. The Question paper has three sections: Section A, B and C, Section B and C have internal choices.

SECTION A (5X4 = 20)						
S. No.	Questions				Marks	CO
Q 1	Describe two of the methods adopted for the display of indications related to highRange measurements.				4	CO1
Q 2	Discuss the rotor and inner Gimbal rings of a directional gyro are erected to the level position.				4	CO2
Q 3	What do you understand by the term Head-Up-Display? With aid of diagram describe how required basic flight data is displayed to a pilot.				4	CO3
Q 4	In a typical series thermoelectric circuit temperature to be $500^{\circ} \mathrm{C}$, the following resistance value apply : $\mathrm{R}_{t h}=0.79 \Omega, \mathrm{R}_{l}=24.87 \Omega, \mathrm{R}_{v}=7 \Omega, \mathrm{R}_{i}=23 \Omega$ voltage generated by thermocouple is 20.64 mV , Find the current in the circuit.				4	CO4
Q 5	Define the Nyquist frequency and aliasing effects in the digital signal				4	CO5
SECTION B (4X10=40)						
Q 6	Given the following information find the value of deviation coefficients $\mathrm{A}, \mathrm{B}, \mathrm{C}$ aircraft magnetism				10	CO3
	Magnetic Heading	Compass Deviation	Magnetic Heading	Compass Deviation		
	000°	$+4^{0}$	180°	-1^{0}		
	$045{ }^{0}$	$+2^{0}$	$225{ }^{0}$	-2^{0}		
	$090{ }^{0}$	$+4^{0}$	$270{ }^{0}$	-2^{0}		
	$035{ }^{0}$	$+3^{0}$	$315{ }^{0}$	0^{0}		

Q 7	a) What are the principal components which comprise an aircraft pitot-static system? b) The vertical speed indicator of an aircraft flying at a true airspeed of 100 kt , in a descent with a slope of 3 degrees indicates	10	CO1
Q 8	Describe the construction and operation of a ring laser gyroscope processes under the influence of an applied torque.	10	CO 3
Q 9	Design the Multiplexer for consider the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,3,4,11,12,13,14,15)$ and implemented with an 8-to-1 line with logic diagram (Or)	10	CO5
Q 10	What types of conversion technique used in telemetry in UAVs and Satellites?	10	$\mathrm{CO5}$
SECTION C (2X20=40)			
Q 11	Assuming an aircraft is flying in the southern hemisphere, What errors compass reading will be introduce when (i) The Aircraft accelerates on an easterly heading (ii) The aircraft turns from southerly heading towards East. (iii) Acceleration Error and northerly turning error	20	CO 2
Q 12	a) Draw Explain the circuit of typical capacitance type fuel quantity indicating system and what effects do temperature changes have on the fuel used and how these are compensated in a fuel quantity indicating system. b) Describe how the rate gyroscope principle is applied to a turn and bank indicator. (Or)	12 08	$\begin{aligned} & \mathrm{CO} 4 \\ & \mathrm{CO} \end{aligned}$
Q 13	a) The rotor of a turbojet engine has a mass 200 kg and a radius of gyration 25 cm . The engine rotates at a speed of $10,000 \mathrm{rpm}$ in the clockwise direction if viewed from the front of the aero plane. The plane while flying at $1000 \mathrm{~km} / \mathrm{hr}$. turns with a radius of 2 km to the right. Compute the gyroscopic moment the rotor exerts on the plane structure. Also, determine whether the nose of the plane tends to rise or fall when the plane turns. b) Draw diagram to illustrate the relationship between the earth's magnetic components and magnetic dip at the equator and at the magnetic poles.	12	CO4 CO3

CONFIDENTIAL

Name of Examination (Please tick, symbol is given)	$:$	MID		END	\checkmark	SUPPLE	
Name of the School (Please tick, symbol is given)	$:$	SOE	\checkmark	SOCS		SOP	
Programme	$:$	M. Tech ASE+UAV					
Semester	$:$	II					
Name of the Course	$:$	Flight Instrumentation and Data Acquisition System					
Course Code	$:$	MVEG 7004					
Name of Question Paper Setter	$:$	40000908					
Employee Code							
Mobile \& Extension	8938817363						
Note: Please mention additional Stationery to be provided, during examination such as Table/Graph Sheet etc. else mention "NOT APPLICABLE": Time of Examination No. of Copies (for Print)							
Date of Examination							

Note: - Pl. start your question paper from next page

Name: Enrolment No:			
Cours Progra Time: Instru The Qu	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018 Flight Instrumentation and Data Acquisition System Semester m: M. Tech ASE+UAV 3 hrs . Max. Mar tions: Make use of sketches/plots to elaborate your answer. Brief and to the point answ stion paper has three sections: Section A, B and C, Section B and C have internal choices.	II ks: 100 rs are ex	ected.
SECTION A (5X4 = 20)			
S. No.	Questions	Marks	CO
Q 1	What do you understand by the term Head-Up-Display? With aid of diagram describe how required basic flight data is displayed to a pilot.	4	CO1
Q 2	What are the principal components which comprise an aircraft pitot-static system?	4	CO1
Q 3	Why is it necessary for the Gyroscope assembly of a directional gyro to be caged when setting is heading?	4	CO3
Q 4	Explain how the effects of temperature change in an aircraft compass?	4	CO4
Q 5	Define the Sampling frequency and quantization errors in the digital signal	4	CO5
SECTION B (4X10 = 40)			
Q 6	Describe the construction and operation of Air speed indicator.	10	CO1
Q 7	Draw diagram to illustrate the relationship between the earth's magnetic components and magnetic dip at the equator and at the magnetic poles.	10	CO3
Q 8	a) In a typical parallel thermoelectric circuit temperature to be $500^{\circ} \mathrm{C}$, the following resistance value apply: $\mathrm{R}_{t h}=0.79 \Omega, \mathrm{R}_{l}=24.87 \Omega, \mathrm{R}_{v}=7 \Omega, \mathrm{R}_{i}=23$ Ω voltage generated by thermocouple is 20.64 mV , Find the current in the circuit. b) Describe the construction and operation of a fiber optic gyroscope processes under the influence of an applied torque.	$\begin{aligned} & 05 \\ & 05 \end{aligned}$	$\begin{aligned} & \mathrm{CO} 4 \\ & \mathrm{CO} 2 \end{aligned}$
Q 9	What effect does acceleration of an aircraft have on the indicating of a gyro horizon (or)	10	CO4

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& \& \\
\hline \multirow[t]{6}{*}{Q 10} \& \multicolumn{4}{|l|}{Given the following information find the value of deviation coefficients \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) aircraft magnetism} \& \multirow{6}{*}{10} \& \multirow{6}{*}{\(\mathrm{CO3}\)} \\
\hline \& Magnetic Heading \& Compass Deviation \& Magnetic Heading \& \begin{tabular}{l}
Compass \\
Deviation
\end{tabular} \& \& \\
\hline \& \(000^{0}\) \& \(+3^{0}\) \& \(270^{0}\) \& \(-2^{0}\) \& \& \\
\hline \& \(050{ }^{\circ}\) \& \(+4^{0}\) \& \(225{ }^{\circ}\) \& \(-2^{0}\) \& \& \\
\hline \& \(080^{0}\) \& \(+2^{0}\) \& \(180^{0}\) \& \(-1^{0}\) \& \& \\
\hline \& \(040{ }^{0}\) \& \(+3^{0}\) \& \(315{ }^{0}\) \& \(0^{0}\) \& \& \\
\hline \multicolumn{7}{|c|}{SECTION C (\(2 \times 20=40\))} \\
\hline Q 11 \& \multicolumn{4}{|l|}{\begin{tabular}{l}
Assuming an aircraft is flying in the southern hemisphere, What errors compass reading will be introduce when \\
(i) The Aircraft accelerates on an easterly heading \\
(ii) The aircraft turns from southerly heading towards East. \\
Acceleration Error and northerly turning error
\end{tabular}} \& 20 \& CO2 \\
\hline Q 12 \& \multicolumn{4}{|l|}{\begin{tabular}{l}
a) The rotor of a turbojet engine has a mass 200 kg and a radius of gyration 25 cm . The engine rotates at a speed of \(10,000 \mathrm{rpm}\) in the clockwise direction if viewed from the front of the aero plane. The plane while flying at \(1000 \mathrm{~km} / \mathrm{hr}\). turns with a radius of 2 km to the right. Compute the gyroscopic moment the rotor exerts on the plane structure. Also, determine whether the nose of the plane tends to rise or fall when the plane turns. \\
b) Draw diagram to illustrate the relationship between the earth's magnetic components and magnetic dip at the equator and at the magnetic poles. \\
(Or)
\end{tabular}} \& 12
08 \& \(\mathrm{CO4}\)

$\mathrm{CO3}$

\hline Q 13 \& \multicolumn{4}{|l|}{| a) Draw Explain the circuit of typical capacitance type fuel quantity indicating system and what effects do temperature changes have on the fuel used and how these are compensated in a fuel quantity indicating system. |
| :--- |
| b) Describe how the rate gyroscope principle is applied to a turn and bank indicator. |} \& 20

08 \& CO 4
$\mathrm{CO3}$

\hline
\end{tabular}

