UPES
 UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

| Programme: | B.Tech GIE | Semester-VI |
| :--- | :--- | :--- | :--- |
| Course Name: | Digital Image Processing | Max. Marks : 100 |
| Course Code: | GIEG321 | Duration $: \mathbf{3 ~ H r s}$ |

No. of page/s: 2

Section-A

Answer all questions

[4X7.5=30]

1. Compare the Lossy compression vs Lossless compression
2. The original image is single band 8 bit data of 256×256 pixels having file size of 65,536 bytes. After compression the image size is 6,554 bytes. Evaluate the data redundancy in image file.
3. Evaluate the merits/demerits of frequency domain filters in satellite data image processing.
4. List out the role of sampling and quantization techniques in image data compression

Section - B

Answer all questions
[3X15=45]
5. Demonstrate any three key image processing algorithms being used by GeoInformatics Engineers in sub-surface resource mapping with suitable example. 15]
6. Evaluate the algorithms for various spatial and statistical filtering

OR

Demonstrate the various steps involve in Resolution merge and RGB to IHS conversion
7. Calculate the first order and various second order entropy measurements (H) of the pixels block

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

Section - C

Answer all questions
[1X25=25]
8. Evaluate in detail on various steps of frequency domain processing of digital imagery using Fast Fourier Transformation (FFT). How FFT can be useful for geoscientific community?

OR

An imagery is having 6 grey levels values namely a1, a2, a3, a4, a5 and a6 with their probabilities of $0.3,0.2,0.1,0.1,0.2,0.1$. Generate a Huffman coding for these grey levels. Imagery having two grey level symbol A \& B with their probability given as $\mathrm{P}(\mathrm{A})=0.4$ and $\mathrm{P}(\mathrm{B})=0.6$ being encoded of symbol code length of 4 with arithmetic code of 0.762 . Decode the arithmetic code (0.762) to find out the correct sequence of symbol.
[12+13]

