

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Programme: B.Tech GIE	Semester – VI	
Course Name: Digital Image Processing	Max. Marks : 100	
Course Code: GIEG321	Duration : 3 Hrs	
No. of page/s: 2		

Section-A

Answer all questions

- [4X7.5=30]
 Compare the Lossy compression vs Lossless compression [7.5]
 The original image is single band 8 bit data of 256x256 pixels having file size of 65,536 bytes. After compression the image size is 6,554 bytes. Evaluate the data redundancy in image file. [7.5]
 Evaluate the merits/demerits of frequency domain filters in satellite data image processing. [7.5]
 List out the role of sampling and quantization techniques in image data
 - compression [7.5]

<u>Section – B</u>

[3X15=45]

Answer all questions

- 5. Demonstrate any three key image processing algorithms being used by Geo-Informatics Engineers in sub-surface resource mapping with suitable example. 15]
- 6. Evaluate the algorithms for various spatial and statistical filtering [15]

OR

Demonstrate the various steps involve in Resolution merge and RGB to IHS conversion [15]

 Calculate the first order and various second order entropy measurements (H) of the pixels block [15]

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

<u>Section – C</u>

[1X25=25]

Answer all questions

Evaluate in detail on various steps of frequency domain processing of digital imagery using Fast Fourier Transformation (FFT). How FFT can be useful for geoscientific community? [20+5]

OR

An imagery is having 6 grey levels values namely a1, a2, a3, a4, a5 and a6 with their probabilities of 0.3, 0.2, 0.1, 0.1, 0.2, 0.1. Generate a Huffman coding for these grey levels. Imagery having two grey level symbol A & B with their probability given as P(A) = 0.4 and P(B) = 0.6 being encoded of symbol code length of 4 with arithmetic code of 0.762. Decode the arithmetic code (0.762) to find out the correct sequence of symbol. [12+13]

END*