Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018			
Cour Progr Time: Instru	Compiler Design Semester: IV 3 hrs. Max. Mark ions: Attempt all the questions.	100	
SECTION A			
S. No.		Marks	CO
Q 1	How a parser generator can be used to facilitate the construction of the front end compiler.	4	CO1
Q 2	Define the term reduction, handle and right sentential form. Explain with a suitable example.	4	CO2
Q3	Find the reduced grammar equivalent to the following CFG:- $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{AC} / \mathrm{SB} \\ & \mathrm{~A} \rightarrow \mathrm{BaSC} / \mathrm{a} \\ & \mathrm{~B} \rightarrow \mathrm{aSB} / \mathrm{bbC} \\ & \mathrm{C} \rightarrow \mathrm{Bc} / \mathrm{ad} \end{aligned}$	4	CO2
Q4	Discuss the peephole optimization?	4	CO4
Q5	What is a directed acyclic graph? Discuss the steps for constructing DAG.	4	CO5
SECTION B			
Q 6	Write Syntax Directed translation rules such that along with the parsing, the infix expression will be converted into postfix form for the following grammar. $\begin{aligned} & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\ & \mathrm{E} \rightarrow \mathrm{~T} \\ & \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} \\ & \mathrm{~T} \rightarrow \mathrm{~F} \\ & \mathrm{~F} \rightarrow(\mathrm{E}) \\ & \mathrm{F} \rightarrow \text { id } \end{aligned}$ Illustrate the rules with a suitable example.	10	CO3
Q7	Convert the following pseudo code into 3-Address code. while ($\mathrm{A}<\mathrm{C}$ and $\mathrm{B}>\mathrm{D}$) do \{if $\mathrm{A}=1$ then $\mathrm{C}:=\mathrm{C}+1$ else While ($\mathrm{A}<=\mathrm{D}$) do $\{\mathrm{A}:=\mathrm{A}+3$ \} \}	10	CO5

Q8	Construct a predictive parsing table for the following grammar. $\begin{aligned} & \mathrm{S} \rightarrow(\mathrm{~L}) / \epsilon \\ & \mathrm{A} \rightarrow \text { SA } / \epsilon \\ & \mathrm{L} \rightarrow \mathrm{SA} \\ & \hline \end{aligned}$	10	CO 3
Q9	Write quadruples, triples and indirect triples for the expression:- $-((\mathrm{A} / \mathrm{B})+\mathrm{B})^{*}(\mathrm{C}+(\mathrm{D} * \mathrm{E}))-(\mathrm{A}+\mathrm{B}+\mathrm{C})$ Or, Create a cross compiler for EQN using following compilers (i) C compiler, written in PDP-11, producing code in PDP-11 (ii) An EQN language compiler producing code for text formatter, TROFF and written in C. Show your steps using T-diagram.	10	$\begin{gathered} \text { CO1/C } \\ 05 \end{gathered}$
SECTION-C			
Q 10	Construct SLR parsing table for the following grammar and identify the problem which may encounter while parsing a string. Resolve the problem encountered by constructing the CLR parsing table. Parse $\boldsymbol{i d}=\boldsymbol{i d} \boldsymbol{*} \boldsymbol{i d}+\boldsymbol{i d} * \boldsymbol{i d}$ with LALR parsing table constructed for the same grammar prescribed below. $\begin{aligned} & \mathrm{G} \rightarrow \mathrm{E}=\mathrm{E} \mid \mathrm{id} \\ & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\ & \mathrm{~T} \rightarrow \mathrm{~T} * \mathrm{id} \mid \mathrm{id} \end{aligned}$	20	$\begin{gathered} \mathrm{CO} 2 / \mathrm{C} \\ \mathrm{O} 3 \end{gathered}$
Q11	Construct the basic blocks, draw the flow graph and identify the loop invariant statements for the following pseudo code. $\begin{aligned} & \mathrm{x}=1 \\ & \mathrm{i}=1 \\ & \mathrm{y}=1 \\ & \text { while }(\mathrm{i}<=\mathrm{n})\{ \\ & \mathrm{x}=\mathrm{x}+\mathrm{A}[\mathrm{i}] \\ & \mathrm{y}=2 \\ & \mathrm{i}=\mathrm{i}+1 \\ & \} \end{aligned}$ Or, Discuss the following terms-: (a) Activation Record (b) Handle Pruning (c) Leading (d) Symbol Table Organization	20	CO5

Name: Enrollment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2018			
Course: Compiler Design Program: B.Tech.- CSE (All IBM specialization) Time: 03 hrs.	Compiler Design Semester: B.Tech.- CSE (All IBM specialization) 3 hrs. Max. Mark tions: Attempt all the questions.	100	
SECTION A (All questions are compulsory)			
S.No.		Marks	CO
Q 1	Discriminate between the front end and back end of a compiler? What are the advantages of breaking up the compiler functionality into these two distinct stages	4	CO1
Q 2	Describe the role of symbol table in compiler	4	CO4
Q 3	State the problems with Top-Down Parsing.	4	CO2
Q 4	State the difference between synthesized attributes and inherited attributes.	4	CO3
Q 5	Translate the following expression into triple representation: $\mathrm{x}[\mathrm{i}]=\operatorname{interest}(\mathrm{p}, \mathrm{n}, \mathrm{r})+\mathrm{y}[\mathrm{i}]+\mathrm{p}$	4	$\mathrm{CO5}$
SECTION B(All questions are compulsory)			
Q 6	Explain the role of syntax directed translation scheme in detail.	10	CO3
Q 7	List various operations that can be implemented in a symbol table.	10	CO4
Q 8	For the following C code, generate the intermediate code (Three-address code only). ```while (a > b && a <= 2*b-5) { a=a+b; }```	10	$\mathrm{CO5}$
Q 9	Create a cross compiler for EQN using following compilers (i) C compiler, written in PDP-11, producing code in PDP-11 (ii) An EQN language compiler producing code for text formatter, TROFF and written in C. Show your steps using T-diagram. Or, Consider the following grammar: - $\begin{aligned} & \mathrm{A} \rightarrow \mathrm{AcB}\|\mathrm{cC}\| \mathrm{C} \\ & \mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{id} \\ & \mathrm{C} \rightarrow \mathrm{CaB}\|\mathrm{BbB}\| \mathrm{B} \end{aligned}$ Construct the first and follow sets for the grammar. Also design a LL(1) parsing table for the grammar.	10	$\begin{gathered} \text { CO1/C } \\ 02 \end{gathered}$

SECTION C (All questions are compulsory)			
Q 10	Construct LALR(1) for the following grammar. $\begin{aligned} & S \rightarrow B \\ & B \rightarrow \text { begin DA end } \\ & D \rightarrow \text { Dd; / } \epsilon \\ & A \rightarrow A, E / \epsilon \\ & E \rightarrow B / S \end{aligned}$ Check the validity of the string " begin d; end".	20	$\mathrm{CO2}$
Q 11	Perform different code optimizations for the following code by first constructing Basic Blocks and flow graph (1) \quad PROD $:=0$ (2) $\mathrm{I}:=1$ (3) $\mathrm{T}_{1}:=4 * \mathrm{I}$ (4) $\mathrm{T}_{2}:=\boldsymbol{\operatorname { a d d r }}(\mathrm{A})-4$ (5) $\mathrm{T}_{3}:=\mathrm{T}_{2}\left[\mathrm{~T}_{1}\right]$ (6) $\mathrm{T}_{4}:=\boldsymbol{\operatorname { a d d r }}(\mathrm{B})-4$ (7) $\mathrm{T}_{5}=\mathrm{T}_{4}\left[\mathrm{~T}_{1}\right]$ (8) $\mathrm{T}_{6}:=\mathrm{T}_{3} * \mathrm{~T}_{5}$ (9) PROD:= PROD+T ${ }_{6}$ (10) $\mathrm{I}:=\mathrm{I}+1$ (11) If I ≤ 20 goto (3) Or, Define the following terms: a) DAG b) Handle Pruning c) Trailing d) L-Attributed SDD	20	$\begin{gathered} \mathrm{CO5} / \mathrm{C} \\ \mathrm{O} 1 / \mathrm{C} 0 \\ 2 / \mathrm{CO} \\ / \mathrm{CO4} \end{gathered}$

