Name:

Enrolment No:

END SEMESTER EXAMINATIONS MAY-2018 Course: CHEG 211 – Mass Transfer Operations

Program: B.Tech. (APE Gas) Time: 03 hrs. Semester: IV Max. Marks:100

Instructions:

- 1. Attempt any 2 questions from Section A (each carry 10 marks); any two Questions (4 is compulsory) from Section B (each carry 15 marks); any two Questions (7 is compulsory) from Section C (each carry 25 marks).
- 2. Strictly, students should suitably assume the Missing data, if any, clearly mention the same in the answer sheet.
- **3.** Each student should avail 5 graph sheets maximum.

Section A (Answer any TWO question (2* 10m =20m)

1. Answer briefly

	a. State Fick's law of diffusion		
	b. Differentiate between J-flux and N-flux		CO1
	c. State the relation between overall mass transfer coefficient (K_y) and	[10]	CO1
	individual mass transfer coefficient (ky)?		001
	d. Define relative volatility (α), express $y = f(x, \alpha)$		
	e. Five types of feeds to distillation and draw their q-lines.		
2.	In continuous distillation, what does the following terms signify ?		
	a. Reflux ratio. b. Total reflux conditions c. Minimum reflux ratio d. Actual reflux ratio?	[10]	CO3
3.	The performance and efficiency of plates in distillation column is reduced drastically at		
	adverse gas flow rates. Justify this statement with, four commonly occurring problems	[10]	CO3
	in a plate column due to variation in gas flow rates.		
	Section B (Q. No. 4 is compulsory & Answer either Q.no. 5 or 6 (2* 15m =30m)		
4.	Compulsory Question: It is desired to absorb 95% of acetone by water from a mixture		
	of acetone and nitrogen containing 1.5% of the component in a countercurrent tray tower.		
	Total gas input is 30 kmol/hr and water enters the tower at a rate of 90 kmol/hr. The tower	[15]	CO4
	operates at 27°C and 1 atm. The equilibrium relation is Y=2.53X. Determine the number		
	of ideal stages necessary for the separation using graphical method		

5	A mixture of benzene and toluene containing 40 mole % of benzene is to be separated to		
	give a product of 90 mole % of benzene at the top and bottom product with not more		
	than 10 mole % of benzene. Using an average value of 2.4 for the volatility of benzene		
	relative to toluene, plot x vs y and label equilibrium line, diagonal line, W, F and D	[15]	CO4
	points. Calculate the number of theoretical plates required at total reflux, using		
	graphical method.		
6	Differentiate (in tabular form) between Packed bed column and Plate columns for gas- liquid contactors.	[15]	CO4
	SECTION C (Q.No. 7 is compulsory & Answer either 8 or 9 (02*25m =50m)		
7	Compulsory question: 1000 kg/hr of a mixture containing 42 mole percent heptane and		
	58 mole percent ethyl benzene is to be fractionated to a distillate containing 97 mole		
	percent heptane and a residue containing 99 mole percent ethyl benzene using a total		
	condenser and feed at its saturated liquid condition. The enthalpy-concentration data		
	for the heptane-ethyl benzene at 1 atm pressure are as follows:		
	$x_{heptane}$ 00.080.180.250.490.650.790.911.0 $y_{heptane}$ 00.280.430.510.730.830.900.961.0		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Calculate the following: Plot H vs. (x,y) (2)		
	Plot x vs. y with same scale as above. (2)	[25]	CO4
	Mark W,D,F in x vs y and Mark F in H vs x curve (2)		
	Construct F-a-b-C and Mark C in H vs y curve (2)		
	Find Q'min point and evaluate Rmin (2)		
	If R _{actual} is 2.5, Determine Q' _{actual} (2)		
	Construct ΔD -F- ΔW line. Report Condenser duty (Q' _{actual}) and Reboiler duty (Q'). (4)		
	Draw atleast 4 tie lines from ΔW and determine x", y" data. Draw atleast 4 tie lines		
	from ΔD and determine x', y' data. (2)		
	Construct Operating lines for enriching section using x', y'passing through D. Construct		
	Operating lines for stripping section using x", y" passing through W. (4)		
	Determine number of plates. (2)		
	If efficiency of the plate is 50%, determine number of actual stages including reboiler. (1)		

8	A saturated liquid mixture containing 60 mole % benzene and 40 mole % toluene is to be distilled continuously into a distillate product containing 90 mole % benzene and the bottom product containing 5 mole % benzene. The fractional distillation column will operate at approximately constant pressure of 1 atm. Find minimum reflux ratio If actual reflux ratio is 2, determine the theoretical number of plates	[25]	CO4
	Suggest optimum feed plate location	[25]	04
	If efficiency of the plate is 50%, determine the actual number of plates including reboiler.		
	Equilibrium data are:		
	x00.0170.0750.130.2110.2880.370.4110.5810.781y00.0390.1610.2610.3930.4960.5910.6320.7770.91		
10	[a] A liquid feed consisting of 1200 gmoles of mixture containing 30% naphthalene and		
10	70% dipropylene glycol is differentially distilled at 100 mm Hg pressure and final		
	distillate contains 55% of the feed solution. The VLE data are		
	x % 8.4 11.6 28.0 50.6 68.7 80.6 88		
	y % 22.3 41.1 62.9 74.8 80.2 84.4 88		
	Determine the amount of residue and distillate (2)		
	Determine LHS value of Rayleigh's equation (2)	[25]	CO4
	Plot $1/y^*$ -x vs x for the give equilibrium data: (6)	[23]	04
	Determine the concentration of naphthalene in the residue (x_W) from graph such that LHS and PHS of the Payleigh's equation is belanced (10)		
	and RHS of the Rayleigh's equation is balanced (10).		
	[b] Justify why and when the following gas liquid contactors are used:		
	i. Steam distillation (2.5)		
	ii. Azeotropic distillation (2.5)		
	Practice makes one perfect		

--Practice makes one perfect--