\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Name: \\
Enrolment No:
\end{tabular}} \\
\hline \begin{tabular}{l}
Cours \\
Progra Time: \\
Instru
\end{tabular} \& \begin{tabular}{l}
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018 \\
Theory of plates \(\&\) shells (CIVL 7012) \\
Semester: \\
: M. Tech 3 hrs. \\
Max. Marks \\
Answer all the questions
\end{tabular} \& \[
: 100
\] \& \\
\hline \multicolumn{4}{|c|}{SECTION A} \\
\hline S. No. \& \& Marks \& CO \\
\hline Q. 1 \& How do you classify plates as per various theories? \& 5 \& CO1 \\
\hline Q. 2 \& Explain the various assumptions in the analysis of orthotropic plates. \& 5 \& CO3 \\
\hline Q. 3 \& Give a sketch for at least five types of reinforced concrete shells \& 5 \& CO2 \\
\hline Q. 4 \& Briefly explain the finite difference method for the bending of simply supported shells. \& 5 \& CO4 \\
\hline \multicolumn{4}{|c|}{SECTION B} \\
\hline Q. 5 \& Obtain the expression for deflection in case of non-uniformly loaded circular plates with clamped edges. \& 10 \& CO1 \\
\hline Q. 6 \& Derive an expression for Bending moments of orthotropic rectangular plate subjected to loading of \(q=q_{o} \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}\). \& 10 \& \(\mathrm{CO3}\) \\
\hline Q. 7 \& Using Classical Shell theory, Derive the various stresses developed in simply supported shells with circular directrix. \& 10 \& CO2 \\
\hline Q. 8

Q. 9 \& \begin{tabular}{l}
For a square plate of side 2.5 m , under UDL of $10 \mathrm{kN} / \mathrm{m}^{2}$, finds the maximum deflection \& maximum slope taking $\gamma=0.5, \mathrm{E}=250 \mathrm{kN} / \mathrm{mm}^{2}$ \& thickness of plate $=$ 100 mm . Obtain the deflection using Folded plate theory \\
OR \\
Derive the expression of equilibrium for hyperbolic shells subjected to live \& snow loads.

 \& 10 \&

CO3 \\
CO4
\end{tabular} \\

\hline \multicolumn{4}{|c|}{SECTION-C} \\
\hline Q. 10 \& Using levy's method, Derive an expression for simply supported rectangular plate under hydrostatic pressure \& 20 \& CO2 \\

\hline \[
$$
\begin{aligned}
& \text { Q. } 11 \\
& \text { Q. } 12
\end{aligned}
$$

\] \& | Derive an expression for Spherical dome with Parabolic directrix under Dead, live \& snow load. |
| :--- |
| OR |
| Derive an expression for rectangular plate with two edges built in, third edge simply supported \& fourth edge simply supported with patch loading. | \& 20 \& $\mathrm{CO3}$

$\mathrm{CO1}$ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Name: \\
Enrolment No:
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\(\left.\begin{array}{lrl} \& \text { UNIVERSITY OF PETROLEUM AND ENERGY STUDIES } \\ \text { End Semester Examination, April/May 2018 }\end{array}\right)\) Semester: II} \\
\hline \multicolumn{4}{|c|}{SECTION A} \\
\hline S. No. \& \& Marks \& CO \\
\hline Q. 1 \& Explain the various thermal stresses produced in plates with clamped edges. \& 5 \& CO1 \\
\hline Q. 2 \& Write down finite difference expression for deflection in plate theory with three edges clamped \& one edge simply supported. \& 5 \& CO4 \\
\hline Q. 3 \& How does membrane theory different from bending theory. \& 5 \& CO2 \\
\hline Q. 4 \& What are the various assumption considered in analysis of folded plates \& 5 \& CO3 \\
\hline \multicolumn{4}{|c|}{SECTION B} \\
\hline Q. 5 \& Obtain an expression for simply supported slab with a circular hole \(\&\) with the concentric loading \& 10 \& CO1 \\
\hline Q. 6 \& Obtain the maximum deflection for orthotropic plate with the dimension of \(\mathrm{L}=50\) ", \(\mathrm{h}=0.5 " ; \mathrm{q}=10 \mathrm{kN} / \mathrm{m}\). Also determine the maximum stresses. Take \(\mathrm{E}=30 \mathrm{X}\) \(10^{6} \mathrm{~N} / \mathrm{mm}^{2} . \mu=0.3\) \& 10 \& \(\mathrm{CO3}\) \\
\hline Q. 7 \& Using Classical shell theory, Derive an expression for various stresses developed in cylindrical shells with catenary as directrix. \& 10 \& CO2 \\
\hline Q. 8

Q. 9 \& | Derive an expression for simply supported circular slab with uniformly distributed load distributed inside the concentric circle. Also determine the deflection using folded plate theory. |
| :--- |
| OR |
| Derive an expression for the displacements in parabolic shells loaded unsymmetrically with respect to their axis. | \& 10 \& \[

\mathrm{CO3}
\]

CO4 \\
\hline \multicolumn{4}{|c|}{SECTION-C} \\
\hline Q. 10 \& Using Navier's theory, Derive an expression for simply supported rectangular plates with triangular loading. \& 20 \& CO2 \\
\hline Q. 11

Q. 12 \& | Derive an expression for the membrane forces $\mathrm{N} \varphi$ \& $\mathrm{N} \theta$ of a parabolic dome of radius "a" having an upper reinforcing beam to accommodate an opening at top. |
| :--- |
| OR |
| A Circular plate of radius "a" has a hole of radius " b " at the middle of the plate. Plate is subjected to uniformly distributed load of Intensity P_{0}. The plate has inner edges clamped \& outer edges free. Find the maximum deflection, moment \& bending stress if $b=a / 4$ | \& 20 \& CO 3

$\mathrm{CO1}$ \\
\hline
\end{tabular}

