Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Mass Transfer -II Program: B.Tech, CE+RP No. of Pages: 03 Semester: VI Max. Marks: 100 Time: 03 hrs

	: Assume suitable			A (Marks 20)		II questions)							
Q 1	Discuss the selection criteria of a solvent for liquid-liquid extraction process.												
Q 2	Derive the operating line equation for counter current absorption.								CO2				
Q 3	What is adsorption isotherm? Give equations for Langmuir and Freundlich adsorption isotherms.												
Q 4	Justify the staten	nent "Dry	ing and evapora	ation are not th	ne same un	it operation".		4 M CO4					
Q 5	Define Relative	humidity	and humid volu	me?				4 M	CO				
			SEC	CTION B (Ma	rks: 40)		l		1				
	solvent is used. Equilibrium Dat Acetic acid 0.69 1.41 2.89 6.42 13.30	a: tter layer (1 Water 98.1 97.1 95.5 91.7 84.4	00 kg) Isopropyl ether 1.2 1.5 1.6 1.9 2.3	Isoprop Acetic acid 0.18 0.37 0.79 1.93 4.82	byl ether laye Water 0.5 0.7 0.8 1.0 1.9	Isopropyl ether 99.3 98.9 98.4 97.1 93.3		10 M	CO				
	25.50	71.1 58.9	3.4	11.40 21.60	3.9 6.9	84.7							
	25.50	71.1											

Acetic acid (c) is to be extracted from a 45% aqueous solution using isopropyl ether (B) as the solvent at 20 °C. The feed rate is 1500 kg/h and the raffinate must not contain more than 2.5% acid. If the solvent supplied to the extractor has 0.5% acetic acid in it, calculate the minimum solvent rate. The liquid-liquid equilibrium data at 20 °C are given below.

		Water la	ıyer (raffi	nate), ma	ss %	Ether					
		А	В		С	А	В	С			
		0.981	0.01	2 ().0069	0.005	0.993	0.0018			
		0.971	0.01	5 (0.0141	0.007	0.989	0.0037	_		
		0.955	0.01	6 (0.0289	0.008	0.984	0.0079			
		0.917	0.01	9 (0.0642	0.01	0.971	0.0193			
		0.844	0.02	3	0.133	0.019	0.933	0.0482			
		0.711	0.03	4	0.255	0.039	0.847	0.114			
		0.589	0.04	4	0.367	0.069	0.715	0.216			
		0.451	0.10	6	0.443	0.108	0.581	0.311			
		0.371	0.16	5	0.464	0.151	0.487	0.362			
	l		1				1				
Q 7	Discuss	in brief wi	th neat s	sketch th	ne adsorp	otion wave.				10 M	CO3
Q 8	Differer	ntiate betwe	en Pack	ked bed	column a	and Plate co	olumn			10 M	CO2
Q 9	List out	various typ	bes of co	ooling to	owers and	d discuss th	eir selectio	n criteria ir	n detail.	10 M	CO5
						TION-C (M				I	
							er <u>any one</u> i			[
Q 10											
	impurity. It is to be decolourised by adsorption of an impurity on an adsorptive carbon. The equilibrium data obtained by stirring various amounts of adsorbent with original solution at constant temperatures are as follows:										
		bon/kg solu		0	0.001	0.004	0.008	0.02	0.04		G 0 0
		brium colou		9.6	8.6	6.3	4.3	1.7	0.7	20 M	CO3
	The orig	ginal solution	on has a	colour	concentr	ation of 9.	6 measured	on an arbi	trary scale and		
	it is desi	ired to redu	ce the co	olour to	10% of it	ts original v	alue. Deter	mine the qu	antity of fresh		
	carbon required per 1000 kg of solution for single stage adsorption.										

Q 11	Derive the relation to determine the time needed for constant drying and falling rate period of the batch drying operations. OR		
	A porous solid is dried in a batch dryer under constant drying conditions. Five hours are required to reduce the moisture content from 25 to 6%. The critical moisture content was found to be 14% and the equilibrium moisture 4%. All the moisture contents are on the dry basis. Assuming that the rate of drying during falling rate period is proportional to the free moisture content, how long should it take to dry a sample of same solid from 20 to 6% under the same drying conditions?	20 M	CO4