

Q 7	A copper tube of 20 mm outside diameter is losing heat at a rate of $90 \mathrm{w} / \mathrm{m}$ due to convection alone to a stream of air flowing across it. If the surface temperature is $90^{\circ} \mathrm{C}$ and the air temperature is $30^{\circ} \mathrm{C}$, determine the velocity of air.	10	CO 2
Q 8	A furnace is of cylindrical shape with radius 2 m and height 2 m . The base, top, and side surfaces of the furnace are all black and are maintained at uniform temperatures of 500,700 , and 1200 K , respectively. Determine the net rate of radiation heat transfer to or from the top surface during steady operation with consideration of shape factors. (or) Determine the shape factor F12 for the following figures (a) and (b) Fig. (a) Cubical section Fig. (b) Cylindrical section	10	CO
Q 9	A counter flow double pipe heat exchanger using superheated steam is used to heat water at the rate of $10500 \mathrm{~kg} / \mathrm{h}$. The steam enters the heat exchanger at $180^{\circ} \mathrm{C}$ and leaves at $130{ }^{\circ} \mathrm{C}$. The inlet and exit temperature of water are $30{ }^{\circ} \mathrm{C}$ and $80{ }^{\circ} \mathrm{C}$ respectively. If the overall heat transfer coefficient from steam to water is $814 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, calculate the heat transfer area. What would be the increase in area if the flow were parallel?	10	CO4
SECTION-C			
Q 10	Hydrogen at $20^{\circ} \mathrm{C}$ and at a pressure of 1 atm . is flowing along a flat plate at velocity of $3 \mathrm{~m} / \mathrm{s}$. If the plate is 0.3 m wide and at $70^{\circ} \mathrm{C}$ determine the following at $\mathrm{x}=0.3 \mathrm{~m}$ and at the distance corresponding to the transition point. Hydrogen properties at 1 atm . are Density $=0.07722 \mathrm{~kg} / \mathrm{m}^{3}$; Thermal conductivity $=0.191 \mathrm{w} / \mathrm{m}^{\circ} \mathrm{C}$; Viscosity $=122.5 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} ; \operatorname{Pr}=0.701$	20	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO4} \end{aligned}$

	Hydrodynamic boundary layer thickness (cm) ; Local friction coefficient; Average friction coefficient; Drag force (N); Thickness of thermal boundary layer (cm); Local convective heat transfer coefficient; Average heat transfer coefficient; Rate of heat transfer (W) (or) A heat exchanger is to be designed to condense the vapour at a rate of $8.3 \mathrm{~kg} / \mathrm{s}$ which is available at its saturation temperature of 355 K . Cooling water at 286 K is available at a flow rate of $60 \mathrm{~kg} / \mathrm{s}$. $\mathrm{U}=475 \mathrm{~W} / \mathrm{m} 2^{\circ} \mathrm{C}$, Latent heat of condensation of the vapor is $600 \mathrm{~kJ} / \mathrm{kg}$. Calculate (i) number of tubes required, if tubes of 25 mm outer diameter, 2 mm thick and 4.8 m long available (ii) number of passes, if cooling water velocity should not exceed $2 \mathrm{~m} / \mathrm{s}$.		
Q 11	(a) A 20 cm diameter spherical ball at 800 k suspended in air. Assume ball is closely approximated as black body, determine (i) the total black body emissive power, (ii) total amount of radiation emitted by ball in 5 minutes, and (iii) spectral black body emissive power at a wave length of 3 micrometers. (b) Water is to be boiled at atmospheric pressure in a mechanically polished steel pan placed on top of a heating unit. The inner surface of the bottom of the pan is maintained at $110^{\circ} \mathrm{C}$. If the diameter of the bottom of the pan is 25 cm , determine (i) the rate of heat transfer to the water and (ii) the rate of evaporation	20	$\begin{gathered} \mathrm{CO3}, \\ \mathrm{CO5} \end{gathered}$

