

Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018

Program Name : B. Tech. (CE+RP) and B. Tech. APE - Gas Semester		: IV	
Course Name : Heat Transfer	Max. Marks	: 100	
Course Code : GNEG 257	Duration	: 3 Hrs	
Course Name: Heat TransferMax. Marks: 100			

Note: Assume any missing data.

Instructions: Attempt all questions from Section-A (each carrying 10 marks) and Section-B (each carrying 12 marks) and any one Question Section-C (carrying 20 marks).

	Section-A (Attempt All Questions)		
1.	Derive the relation for velocity profile and temperature profile for laminar flow through a tube having outer radius r_0 , wall temperature T_w and velocity at the centre of tube u_0 .	[10]	CO3
2.(a)	In which medium - gas or liquid - will the use of fin be more effective & why?	[3]	
(b)	b) One end of a wrought iron ($k = 59$ W/m-K) rod of 30 cm length and 3cm diameter is attached to a wall at 300 °C, while the second end is insulated. The surface of the rod is exposed to an environment at 25 °C and the convection heat transfer coefficient from the surface to the environment is 15 W/m ² -K Determine the rate of heat transfer from the rod and temperature at the insulated end.		CO2
	SECTION B (Attempt All Questions)		
3.(a) (b)	Consider a cylindrical shell of length <i>L</i> , inner radius r_1 , and outer radius r_2 , whose thermal conductivity varies linearly in a specified temperature range as $k = k_0(1 + \beta T)$, where k_0 and β are two specified constants. The inner surface of the shell is maintained at a constant temperature of T_1 , while the outer surface is maintained at T_2 . Assuming steady one dimensional heat transfer, obtain a relation for the temperature distribution in the shell. In a nuclear reactor, 1-cm-diameter cylindrical uranium rods cooled by water from outside serve as the fuel. Heat is generated uniformly in the rods ($k = 29.5$ W/m- ⁰ C) at a rate of 7×10^7 W/m ³ . If the outer surface temperature of rods is 175° C, determine the temperature at their center.	[7]	CO1

	pipe and brick surface are 0.8 and 0.9, respectively. If the system is in steady sate then find the surface heat transfer coefficient of the brick duct, assuming the temperature of the surrounding of the duct is 10 °C.					
7.(a) (b)	Determine the radiation heat loss in W/m of 20 cm diameter heating pipe when it is placed centrally in the brick duct of square section of 30 cm side. The pipe surface is maintained at a temperature of 200 °C, while the brick surface is maintained at 20 °C. Assume only radiation heat transfer between the pipe and brick duct. The emissivity of		[4] [6+2]	CO4		
(b)	Saturated air-free steam at 85 °C condenses on the outer surface of 225 horizontal tubes of 12.7mm outer diameter arranged in a 15 × 15 array. Tube surfaces are maintained at 75 °C. Calculate the total condensation per metre length of the tube bundle. Properties of air are: $\rho = 971.8 \text{ kg/m}^3$, $\mu = 360.7 \times 10^{-6} \text{ kg/m-s}$, $h_{fg} = 2257 \text{ kJ/Kg}$, $k = 0.67 \text{ W/m-K}$.		[8]	CO3		
6.(a)	Explain the regimes of boiling w	20 × 10 ⁻⁶	0.467×10^{-6}	[4]		
	ρ (kg/m³) C _p (kJ/kg-K) k (W/m-K)	1.06 1.008 0.0285	983 4.186 0.65			
	water at mean film temperature are:PropertyAirWater					
	There is no appreciable radiation in water compare with convection in water, but the heat loss by radiation to air compared with convection heat loss is considerable. The emissivity of the pipe surface can be taken as 0.9. The saturation temperature of steam at 1.5 bar is 110.8 °C. The properties of air and			[12]	CO3	
	the following equation: $Nu=0.53(Ra)^{1/4}$					
	is covered by water after a heavy rain, but is exposed to air under normal conditions. Compare the rate of heat transfer to air with the rate of heat transfer to water assuming both fluids are at 10 °C. The heat transfer coefficient in both cases can be determined by					
5.	uniform heating throughout the perfectly insulated so that the wh water flow rate is 10 litres/minut the inner surface temperature of 40 °C $\rho = 994 \text{ kg/m}^3, \text{ k} = 0.628$ A 4 cm OD pipe carrying slightl	ole generated heat is give e. Determine the power r the pipe at the exit. Take C: $60 \text{ W/m-K}, C_p = 4.178 \text{ k}.$	In to the water in the tube. The rating of the heater. Also, find the following properties of air J/kg-K, $v = 0.66 \times 10^{-6} \text{m}^2/\text{s}$	[12] CO		
4.	long tube. The tube is equipped	d with an electric resist	_			

8.(a)	Define NTU and effectiveness of an exchanger. Derive a relation between NTU and effectiveness of an exchanger for a double pipe heat exchanger with counter flow configuration. List the assumptions, also.				
(b)			[10]		
	Temperature, ⁰ C Enthalpy, kCal/kg				
		Vapor	Liquid		
	40	613.5	40.5		
	100	639.2	100.0		
	134	651.4	134.4		CO5
		OR			
(a)	side in a shell & tube heat exchanger.		[5]		
(b)					
	through it and has the following data:			[7+8]	
	$\dot{m}_h = 10 \text{ kg/min}$ $\dot{m}_c = 25 \text{ kg/min}$			[, 0]	
	$C_{ph} = C_{pc} = 4.18 \text{ kJ/kg-K}$				
	$T_{hi} = 70 \ ^{0}C, T_{ho} = 50 \ ^{0}C, T_{ci} = 25 \ ^{0}C$				
	Individual heat transfer coefficient on both sides (h_i and h_o) = 60 W/m ² -K.				
	Calculate				
	(a) Area of heat exchanger.(b) Exit temperature of hot and cold fluids, if the hot water flow rate is doubled.				
	Assume heat trans	fer coefficient on both sides re-	mains same.		