UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April/May 2018

SET-1

Course: Electronics Devices \& Circuits-II
Semester: IV
Program: B.Tech EE, EL-BCT
Time: 03 hrs.
Max. Marks: 100

SECTION A			
S. No.		Marks	CO
Q 1	What is the expected amplification of a BJT transistor amplifier if the DC supply is set to zero volts?	4	CO1
Q 2	What will happen to the output AC signal if the DC level is insufficient? Sketch the effect on the waveform.	4	CO1
Q 3	Draw the circuit diagram of a class B npn push-pull power amplifier using transformer- coupled input.	4	CO 3
Q 4	Draw the circuit diagram of (a) a RC phase shift oscillator and (b) Wien bridge oscillator	4	CO 3
Q 5	For a voltage divider configuration of common emitter transistor explain the effect of R_{s} (Series Resistor) and R_{L} (Load Resistor).	4	CO2
SECTION B			
Q 6	Derive the parameters of Fixed biasing network using small signal analysis. Determine $Z i, Z o$, and $A v$ for the network of Fig. 1 if $I_{D S S}=12 \mathrm{~mA}, V_{P}=6 \mathrm{~V}$, and $y_{o s}$ $=40 \mu \mathrm{~S}$.	10	CO2

	Fig 1		
Q 7	For the common-base amplifier of Fig. 2, determine: (a) Zi . (b) Ai. (c) Av (d) Zo	10	CO1
Q 8	With the help of circuit diagram design, the following circuits and also explain in brief. (a) Voltage series feedback amplifier (b) Voltage shunt feedback amplifier (c) Current series feedback amplifier (d) Current shunt feedback amplifier	10	CO5
Q 9	Calculate the percentage efficiency of CLASS A amplifier and compare it with other power amplifier. OR	10	CO4
Q 10	For the network of Fig. 3: (a) Determine Zi and Zo . (b) Find Av and Ai.	10	CO2

	Fig. 3		
SECTION-C			
Q 11	For the cascaded system of Fig. 4 with two identical stages, determine: (a) The loaded voltage gain of each stage. (b) The total gain of the system, A_{v} and A_{vs}. (c) The loaded current gain of each stage. (d) The total current gain of the system. (e) How Z_{i} is affected by the second stage and R_{L}. (f) How Z_{o} is affected by the first stage and R_{s}. (g) The phase relationship between V_{o} and V_{i}. Fig. 4	20	CO3
Q 12	Consider a system, in which the input and output waveform is 180° out of phase. Design a positive feedback oscillator circuit using RC series circuit It is desired to design a phase-shift oscillator (as in Fig. 18.21a) using an FET having gm $=5000$ $\mu \mathrm{S}, \mathrm{r}_{\mathrm{d}}=40 \mathrm{k} \Omega$, and feedback circuit value of $\mathrm{R}=10 \mathrm{k} \Omega$. Select the value of C for oscillator operation at 1 kHz and RD for $\mathrm{A}>29$ to ensure oscillator action.	20	CO5

	OR		
Q 13	For the source-follower network of Fig. 5: (a) Determine $\mathrm{A}_{\mathrm{vNL}}, \mathrm{Zi}$, and Zo . (b) Determine Av and Avs. (c) Change R_{L} to $4.7 \mathrm{k} \Omega$ and calculate $A v$ and Avs. What was the effect of increasing levels of RL on both voltage gains? (d) Change Rsig to $1 \mathrm{k} \Omega$ (with R_{L} at $2.2 \mathrm{k} \Omega$) and calculate Av and Avs. What was the effect of increasing levels of Rsig on both voltage gains? (e) Change R_{L} to $4.7 \mathrm{k} \Omega$ and Rsig to $1 \mathrm{k} \Omega$ and calculate Zi and Zo . What was the effect on both parameters? Fig. 5	20	CO2
Name: Enrolment No: 1 UPES			

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April/May 2018

SET-2
Course: Electronics Devices \& Circuits-II
Semester: IV
Program: B.Tech EE, EL-BCT
Time: 03 hrs.
Max. Marks: 100

SECTION A			
S. No.		Marks	CO
Q 1	Can you think of the analogy that would explain the importance of the DC level on the resulting AC gain?	4	CO1
Q 2	What will happen to the output AC signal if the DC level is insufficient? Sketch the effect on the waveform.	4	CO2
Q 3	With the help of small signal transistor model define the phase relationship of input and output waveform. Define the above statement with the valid equations.	4	CO1
Q 4	Draw the circuit diagram of (a) a Hartley oscillator and (b) Colpitts oscillator	4	CO5
Q 5	Calculate the efficiency of class B push pull amplifier and compare it with other power amplifiers.	4	CO4
SECTION B			
Q 6	Determine Z_{i}, Z_{o}, and V_{o} for the network of Fig. 1 if $V_{i}=20 \mathrm{mV}$. Fig 1	10	CO2
Q 7	For the common-base network of Fig. 2: (a) Determine Zi and Zo . (b) Calculate Av and Ai. (c) Determine α, β, r_{e}, and r_{o}.	10	CO4

	Fig. 2		
Q 8	Explain in detail the essential conditions of Barkhausen criteria and how the conditions are validated for following circuits: a. Voltage series feedback amplifier b. Voltage shunt feedback amplifier c. Current series feedback amplifier d. Current shunt feedback amplifier	10	CO5
Q 9	Calculate the percentage efficiency of CLASS A amplifier and compare it with other power amplifier. OR	10	CO4
Q 10	For the network of Fig. 3: (a) Determine Zi and Zo . (b) Find Av and Ai.	10	CO1

	OR		
Q 12	For the source-follower network of Fig. 5: (a) Determine $\mathrm{A}_{\mathrm{vNL}}, \mathrm{Zi}$, and Zo . (b) Determine Av and Avs. (c) Change R_{L} to $4.7 \mathrm{k} \Omega$ and calculate $A v$ and Avs. What was the effect of increasing levels of RL on both voltage gains? (d) Change Rsig to $1 \mathrm{k} \Omega$ (with R_{L} at $2.2 \mathrm{k} \Omega$) and calculate Av and Avs. What was the effect of increasing levels of Rsig on both voltage gains? (e) Change R_{L} to $4.7 \mathrm{k} \Omega$ and Rsig to $1 \mathrm{k} \Omega$ and calculate Zi and Zo . What was the effect on both parameters? Fig. 5	20	CO 2
Q 13	Consider a system, in which the input and output waveform is 180° out of phase. It is desired to design a phase-shift oscillator using an FET having gm $=5000 \mu \mathrm{~S}, \mathrm{r}_{\mathrm{d}}=40$ $\mathrm{k} \Omega$, and feedback circuit value of $\mathrm{R}=10 \mathrm{k} \Omega$. Select the value of C for oscillator operation at 1 kHz and R_{D} for $\mathrm{A}>29$ to ensure oscillator action.	20	CO4

