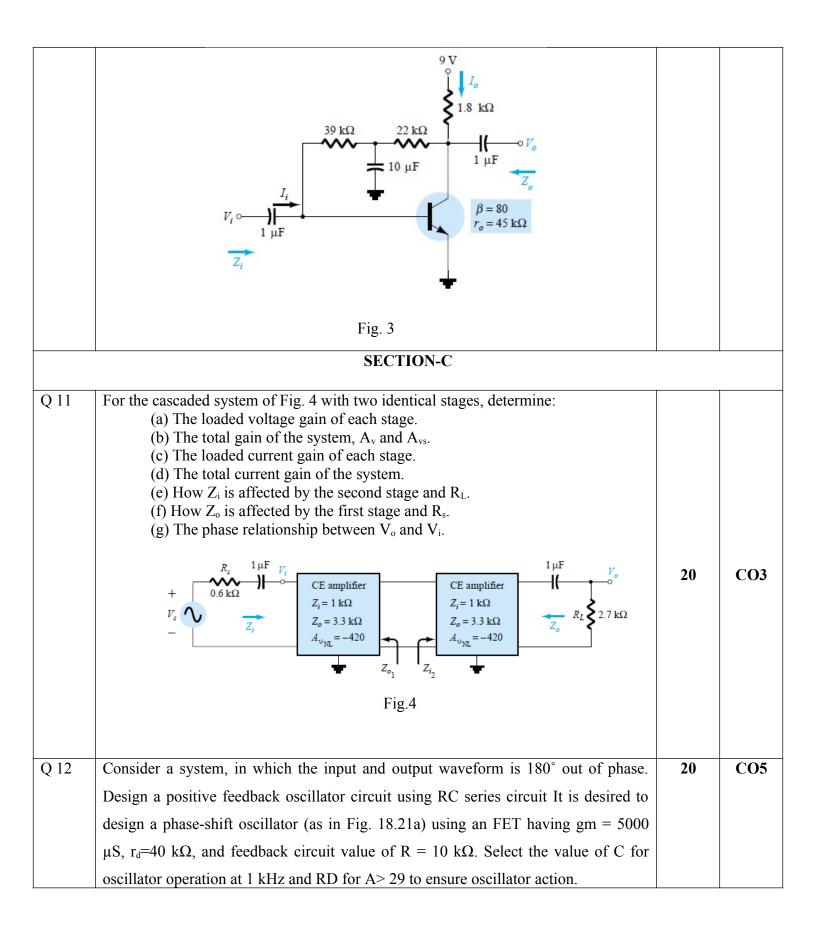
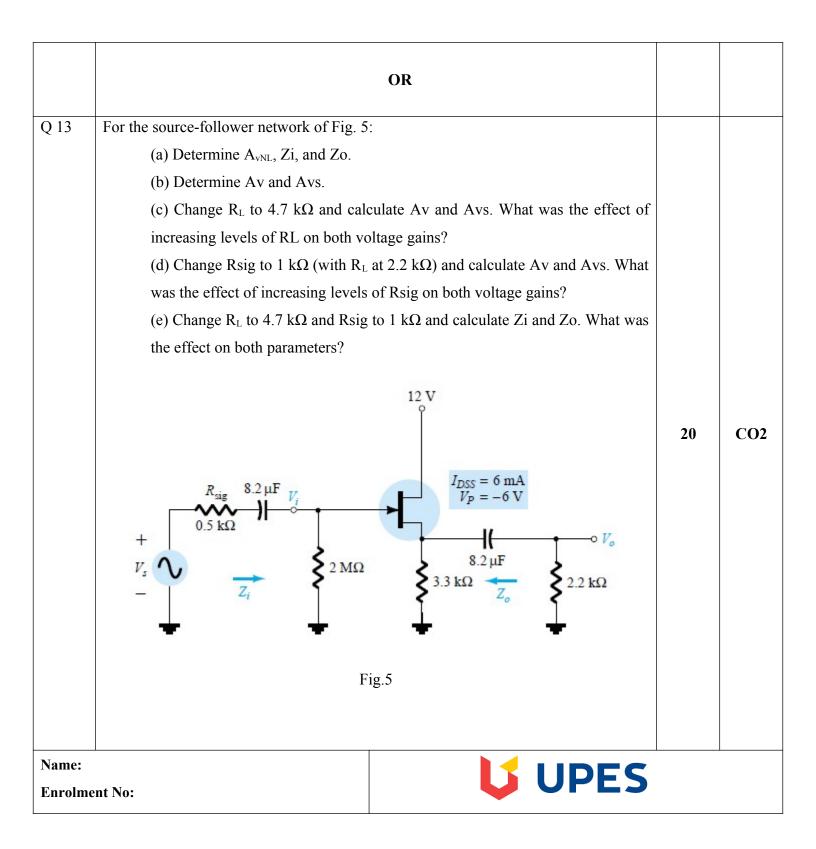
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018


<mark>SET-1</mark>


Course: Electronics Devices & Circuits-II Semester: IV Program: B.Tech EE, EL-BCT Time: 03 hrs.

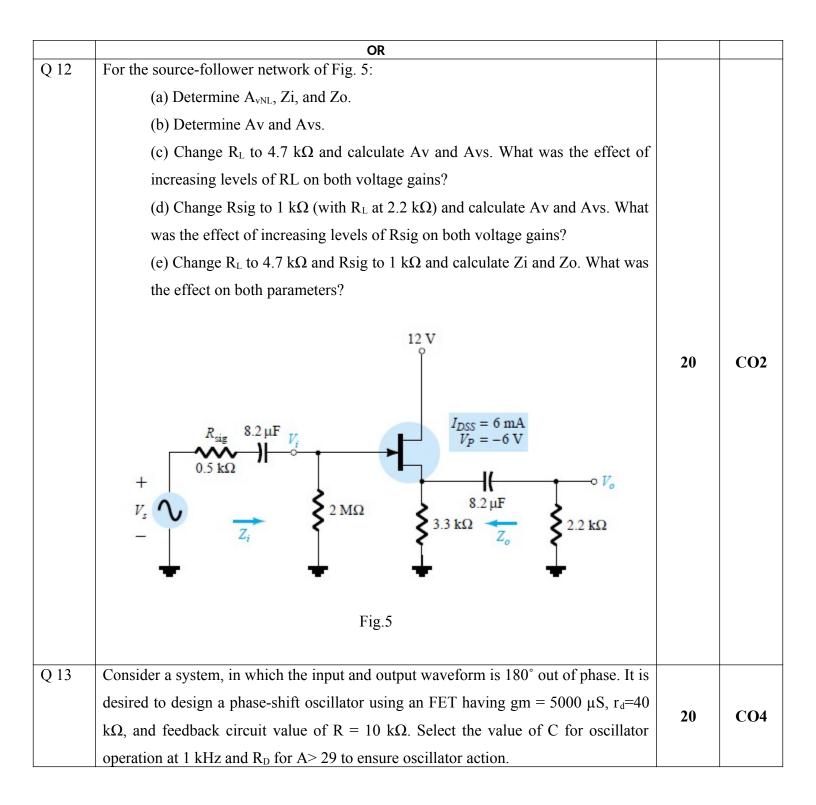
Max. Marks: 100

	SECTION A			
S. No.		Marks	CO	
Q 1	What is the expected amplification of a BJT transistor amplifier if the DC supply is set to zero volts?	4	CO1	
Q 2	What will happen to the output AC signal if the DC level is insufficient? Sketch the effect on the waveform.	4	CO1	
Q 3	Draw the circuit diagram of a class B <i>npn</i> push-pull power amplifier using transformer- coupled input.	4	CO3	
Q 4	Draw the circuit diagram of (a) a RC phase shift oscillator and (b) Wien bridge oscillator	4	CO3	
Q 5	For a voltage divider configuration of common emitter transistor explain the effect of R_s (Series Resistor) and R_L (Load Resistor).	4	CO2	
	SECTION B			
Q 6	Derive the parameters of Fixed biasing network using small signal analysis. Determine Zi, Zo, and Av for the network of Fig. 1 if $I_{DSS} = 12$ mA, $V_P = 6$ V, and $y_{os} = 40 \ \mu$ S. $+18 \ V$ $V_i \circ - + + + + + + + + + + + + + + + + + +$	10	CO2	

	Fig 1		
Q 7	For the common-base amplifier of Fig. 2, determine: (a) Zi. (b) Ai. (c) Av (d) Zo $h_{ib} = 9.45 \Omega$ $h_{jb} = -0.997$ $h_{ob} = 0.5 \mu AV$ $h_{jb} = 1 \times 10^{-4}$ $+ V_{z} \bigvee_{z_{i}} V_{i}$ $1.2 k\Omega$ $= 1.2 k\Omega$ V_{o}	10	CO1
Q 8	 With the help of circuit diagram design, the following circuits and also explain in brief. (a) Voltage series feedback amplifier (b) Voltage shunt feedback amplifier (c) Current series feedback amplifier (d) Current shunt feedback amplifier 	10	CO5
Q 9	Calculate the percentage efficiency of CLASS A amplifier and compare it with other power amplifier. OR	10	CO4
Q 10	For the network of Fig. 3:	10	CO2
	(a) Determine Zi and Zo.		
	(b) Find Av and Ai.		

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

<u>SET-2</u>


Course: Electronics Devices & Circuits-II Semester: IV Program: B.Tech EE, EL-BCT Time: 03 hrs.

Max. Marks: 100

	SECTION A		
S. No.		Marks	CO
Q 1	Can you think of the analogy that would explain the importance of the DC level on the resulting AC gain?	4	CO1
Q 2	What will happen to the output AC signal if the DC level is insufficient? Sketch the effect on the waveform.	4	CO2
Q 3	With the help of small signal transistor model define the phase relationship of input and output waveform. Define the above statement with the valid equations.	4	CO1
Q 4	Draw the circuit diagram of (a) a Hartley oscillator and (b) Colpitts oscillator	4	CO5
Q 5	Calculate the efficiency of class B push pull amplifier and compare it with other power amplifiers.	4	CO4
	SECTION B		
Q 6	Determine Z _i , Z _o , and V _o for the network of Fig. 1 if V _i = 20 mV. $ \begin{array}{c} \downarrow $	10	CO2
Q 7	For the common-base network of Fig. 2: (a) Determine Zi and Zo. (b) Calculate Av and Ai.	10	CO4
	(c) Determine α , β , r_e , and r_o .		

	$h_{fb} = -0.992$ $h_{ib} = 9.45 \Omega$ $h_{ob} = 1 \mu A/V$		
	$\begin{array}{c} & \xrightarrow{I} \\ + \\ 10 \ \mu\text{F} \\ \end{array}$		
	$V_i = \frac{\sum_{i=1}^{1.2 \text{ KM}} 12 \text{ KM}}{\sum_{i=1}^{1.2 \text{ KM}} 4 \text{ V}}$		
	Fig.2		
Q 8	Explain in detail the essential conditions of Barkhausen criteria and how the conditions are validated for following circuits:		
	a. Voltage series feedback amplifierb. Voltage shunt feedback amplifierc. Current series feedback amplifierd. Current shunt feedback amplifier	10	CO5
Q 9	Calculate the percentage efficiency of CLASS A amplifier and compare it with other power amplifier.	10	CO4
	OR		
Q 10	For the network of Fig. 3:	10	CO1
	(a) Determine Zi and Zo.		
	(b) Find Av and Ai.		

	$\begin{array}{c} 9 \text{ V} \\ \uparrow I_{o} \\ 1.8 \text{ k}\Omega \\ \hline I \mu F \\ \hline I_{i} \\ \downarrow \mu F \\ \hline I_{i} \hline $		
	Fig. 3		
	Section C		
Q 11	 1. For the self-bias JFET network of Fig.4: (a) Determine A_{vNL}, Z_i, and Z_o. (b) Sketch the two-port model with the parameters determined in part (a) in place. (c) Determine A_v and A_{vs}. (d) Change RL to 6.8 kΩ and R_{sig} to 1 kΩ and calculate the new levels of Av and Avs. How are the voltage gains affected by changes in R_{sig} and R_L? (e) For the same changes as part (d), determine Z_i and Z_o. What was the impact on both impedances? 	20	CO2
	Fig.4		

