Roll No:

1) UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018
Programme: B. Plan.
Course Name: Statistical and Quantitative Methods in Planning-II
Course Code: MATH 1007
Semester - II
Max. Marks : 100
Duration : $\mathbf{3} \mathbf{~ H r s}$
No. of page/s: 02

Instructions:

Attempt all questions from Section \mathbf{A} (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt Section C (each carrying 20 marks).

9.	The following table gives the number of accidents that occurred during the various days of the week. Find whether the accidents are uniformly distributed over the week. (Given $\Psi^{2}{ }_{6,0.05}=12.59$)								[8]	CO 3
	Days	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.		
	No. of Accidents	14	16	8	20	11	9	14		
10.	Use the graphical method to solve the following LP problem $\operatorname{Max} . Z=15 x_{1}+10 x_{2}$ subject to the constraints $\begin{aligned} & 4 x_{1}+6 x_{2} \leq 360 \\ & 3 x_{1} \leq 180 \\ & 5 x_{2} \leq 200 \\ & x_{1}, x_{2} \geq 0 \end{aligned}$ OR Define Basic solution and optimum basic feasible solution with an example.								[8]	CO2
SECTION C(Q11.A, Q11.B are compulsory and Q12 has internal choices)										
11.A	Ruth and Charlie play a game. At each play, Ruth and Charlie simultaneously extend either one or two fingers and call out a number. The player whose call equals the total number of extended fingers wins that many pennies from the opponent. In the event that neither player's call matches the total, no money changes hands. i) Write down a pay-off matrix for this game (here the strategy $(1,2)$ means that the player holds up one finger and shouts 2). ii) What is the payoff for Ruth if Ruth shows two fingers and calls out 4 and Charlie shows 1 finger and calls out 3 ? What is the payoff for Charlie in this situation?								[10]	$\mathrm{CO4}$
11.B	A company has three production facilities $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} with production capacity 7, 9and 18 units per week of a product, respectively. These units are to be shipped to four warehouses D_{1}, D_{2}, D_{3} and D_{4} with requirement of $5,6,7$ and 14 units per week, respectively. The transportation costs per unit (in rupees) between factories to warehouses are given in the following table:								[10]	CO2
	D_{1}		D_{2}	D		D_{4}				
	 S_{1} 19		30	50		10	7			
	S_{2} 70 $\mathrm{~S}_{3}$		30	40		60	9			
	S_{3} 40		8	70		20				
	Demand 5		8	7		14				
	Solve this transportation problem.									

12	The three samples below have been obtained from normal populations with equal variances. Test the hypothesis at 5% level that the population means are equal: (The table value of F at 5% level of significance for $v_{1}=2$ and $v_{2}=12$ is 3.88) OR The following table gives the yield on 15 sample fields under three varieties of seeds (viz., A, B, C). Test at 5% level of significance whether the average yields of land under different varieties of seeds show significant differences. Table value of F at 5% level for $v_{1}=2$ and $v_{2}=12$ is 3.88)	[20]	CO 3

Roll No:

1) UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018
Programme: B. Plan.
Course Name: Statistical and Quantitative Methods in Planning-II
Course Code: MATH 1007
Semester - II
Max. Marks : 100
Duration : $\mathbf{3} \mathbf{~ H r s}$
No. of page/s: 02

Instructions:

Attempt all questions from Section \mathbf{A} (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt Section \mathbf{C} (each carrying 20 marks).

Section A(All questions are compulsory)											
1.	Explain Merits and limitations of rank correlation coefficient.									[4]	CO1
2.	Define Basic solution and optimum basic feasible solution.									[4]	CO 2
3.	Describe the various environments for decision making.									[4]	CO4
4.	Write all the conditions to apply the ANOVA.									[4]	CO3
5.	Discuss the applications of chi-square test.									[4]	CO 3
SECTION B(Q6, Q7, Q8, Q9 are compulsory and Q10 has internal choices)											
6.	Calculate the coefficient of correlation between Marks in Physics and Marks in Chemistry for the following data									[8]	CO1
	Marks in Physics		65	66	67	68	69	70	71		
	Marks in Chemistry		67	68	66	69	72	72	69		
7.	Ten objects are chosen at random from a large population and their weights are found to be in gms: $63,63,64,65,66,69,69,70,70$, and 71 . In the light of this data, discuss the suggestion that the mean weight in the universe is 65 gms . (Given $\mathrm{t}_{0.05,9}=2.262$)									[8]	CO 3
8.	Find out the regression coefficient of Y on X from the following data:									[8]	CO1
	X	2	4		6	8		10			
	Y	16	18		14	18		20			

12.	The three samples below have been obtained from normal populations with equal variances. Test the hypothesis at 5% level that the population means are equal: (The table value of F at 5% level of significance for $v_{1}=2$ and $v_{2}=12$ is 3.88) OR The following table gives the yield on 15 sample fields under three varieties of seeds (viz., A, B, C). Test at 5% level of significance whether the average yields of land under different varieties of seeds show significant differences. Table value of F at 5% level for $v_{1}=2$ and $v_{2}=12$ is 3.88)	[20]	CO 3

