Roll No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, May 2018
Programme: B. Tech. (SOE)
Semester - II
Course Name: Mathematics II
Max. Marks : 100
Course Code: MATH 1004
Duration : $\mathbf{3}$ Hrs
No. of page/s: 3

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

Section A (Attempt all questions)			
1.	Solve the differential equation $2 \frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-2 y=e^{x}$.	[4]	CO1
2.	Find the Laplace transform of $e^{-t} \cos t \cos 2 t$.	[4]	CO2
3.	Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1-x^{2} & \|x\| \leq 1, \\ 0 & \|x\|>1\end{array}\right.$.	[4]	CO2
4.	A continuous random variable X has a pdf $f(x)=k x^{2} e^{-x} ; x \geq 0$. Find k and mean.	[4]	CO4
5.	Find the complete solution of $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=8\left(x^{2}+e^{2 x}+\sin 2 x\right)$.	[4]	CO1
SECTION B(Q6-Q9 are compulsory and Q10 has internal choice)			
6.	State convolution theorem and hence evaluate $L^{-1}\left(\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right)$.	[8]	CO2

7.	Solve by removal of first order derivative $\frac{d^{2} y}{d x^{2}}+\frac{1}{x^{1 / 3}} \frac{d y}{d x}+\left(\frac{1}{4 x^{2 / 3}}-\frac{1}{6 x^{4 / 3}}-\frac{6}{x^{2}}\right) y=0 .$	[8]	CO1
8.	Using Laplace transform, solve the differential equation $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t$, if $x(0)=1, x\left(\frac{\pi}{2}\right)=-1$.	[8]	CO2
9.	Find the probability that at most 5 defective fuses will be found in a box of 200 fuses if experience shows that 2 percent of such fuses are defective.	[8]	CO4
10.	Apply Stoke's theorem to evaluate $\int_{C}[(x+y) d x+(2 x-z) d y+(y+z) d z]$, where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$. OR Evaluate $\iint_{S}(y z \hat{i}+z x \hat{j}+x y \hat{k}) \cdot d \vec{s}$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant.	[8]	CO3
SECTION C (Q11 is compulsory and Q12 has internal choice)			
11.	A) Prove that $\operatorname{div}\left(\operatorname{grad} r^{n}\right)=n(n+1) r^{n-2}$ where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$. Hence show that $\nabla^{2}\left(\frac{1}{r}\right)=0$. B) Two lines of regression are given by $5 y-8 x+17=0$ and $2 y-5 x+14=0$. If $\sigma_{y}^{2}=16$, find i) the mean values of x and y ii) the coefficient of correlation between x and y.	$\begin{aligned} & {[10]} \\ & {[10]} \end{aligned}$	CO3 CO
12 A	The demand for a particular space part in a factory was found to vary from day to day. In a sample study, the following information was obtained: Use chi-square to test the hypothesis that number of parts demanded does not depend on the day of the week at 5% level of significance. (Given $\chi_{5,0.05}^{2}=11.07$) OR	[10]	CO4

12 B	Use divergence theorem to evaluate the integral $\iint_{S}(x d y d z+y d z d x+z d x d y)$ where S is the portion of the plane $x+2 y+3 z=6$ which lies in the first octant. OR Apply Green's theorem to evaluate $\int_{C}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where C is the boundary of the area enclosed by the X-axis and the upper half of the circle $x^{2}+y^{2}=a^{2}$.	[10]	CO3

Roll No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, May 2018
Programme: B. Tech. (SOE)
Semester - II
Course Name: Mathematics II
Max. Marks : 100
Course Code: MATH 1004
Duration : 3 Hrs
No. of page/s:

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

$\begin{gathered} \text { Section A } \\ \text { (Attempt all questions) } \end{gathered}$			
1.	Solve the differential equation $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}-6 y=e^{-2 x}+e^{-3 x}$.	[4]	CO1
2.	Find the Laplace transform $e^{t} t^{-\frac{1}{2}}$.	[4]	CO2
3.	Find the Fourier transform of $f(x)=\left\{\begin{array}{ll}1 & \|x\|<1, \\ 0 & \|x\|>1\end{array}\right.$.	[4]	CO2
4.	A continuous random variable X has a pdf $f(x)=k x e^{-x} ; x \geq 0$. Find k and mean.	[4]	CO4
5.	Find the complete solution of $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$.	[4]	CO1
SECTION B (Q6-Q9 are compulsory and Q10 has internal choice)			
6.	State convolution theorem and hence evaluate $L^{-1}\left(\frac{1}{s(s+1)(s+2)}\right)$.	[8]	CO2

7.	Solve by removal of first order derivative $\frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(4 x^{2}-1\right) y=-3 e^{x^{2}} \sin 2 x$.	[8]	CO1
8.	Using Laplace transform, solve the differential equation $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0$, if $y(0)=2, y^{\prime}(0)=0$.	[8]	CO2
9.	An irregular 6-faced dice is such that the probability that it gives 3 even numbers in 5 throws is twice the probability that it gives 2 even numbers in 5 throws. How many sets of exactly 5 trials can be expected to give no even number out of 2500 sets.	[8]	CO4
10.	Apply Stoke's theorem to evaluate $\iint_{S}(\nabla \times F) \bullet \hat{n} d s$, where S is the surface $x^{2}+y^{2}+z^{2}=4$ above the $x y$-plane and $\vec{F}=\left(x^{2}+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x z+z^{2}\right) \hat{k}$. OR Evaluate $\iint_{S}(y z \hat{i}+z x \hat{j}+x y \hat{k}) \cdot d \vec{s}$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=16$ in the first octant.	[8]	CO 3
SECTION C(Q11 is compulsory and Q12 has internal choice)			
11.	A) Show that the vector field $\vec{F}=\frac{\vec{r}}{r^{3}}$ is irrotational as well as solenoidal. B) In a partially destroyed laboratory record of an analysis correlation data, the following results only are legible: Variance of $x=9$, Regression equations are $8 x-10 y+66=0 ; 40 x-18 y=214$. Find the coefficient of correlation between x and y.	$\begin{aligned} & {[10]} \\ & {[10]} \end{aligned}$	$\mathrm{CO} 3$ $\mathrm{CO} 4$
12 A	The marks secured by recruits in the selection test (X) and in the proficiency test (Y) are given below: Calculate the rank correlation coefficients.	$[10]$ [10]	CO 4

	OR A survey of 800 families having four children is as follows: Test whether the data is consistent with the hypothesis that the binomial law holds and the chance of male birth is equal to that of female birth. $\left(\chi_{4,0.05}^{2}=9.49\right)$.	
12 B	Use divergence theorem to evaluate the integral $\iint_{S}\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)^{1 / 2} d s$ where S is the surface of the ellipsoid $a x^{2}+b y^{2}+c z^{2}=1$. OR Using Green's theorem to evaluate $\int_{C}[(y-\sin x) d x+\cos x d y]$ where C is the triangle formed by $y=0, x=\frac{\pi}{2}, y=\frac{2}{\pi} x$.	CO 3

