## Roll No:

## UPES

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018
Programme: B.Tech (All SOCS Programs)
Semester - II
Course Name: Mathematics II
Max. Marks : 100
Course Code: MATH 1005
Duration : 3 Hrs
No. of page/s: 3

## Section A <br> ( Attempt all questions)




| 12.A | In a sample of 1000 cases, the mean of a certain test is 14 and S.D is 2.5. Assuming the distribution to be normal, find <br> (i) How many students score between 12 and 15? <br> (ii) How many score above 18 ? <br> Given that the area under the standard normal curve between $z=0$ and $z=0.8$ is 0.2881 , between $z=0$ and $z=0.4$ is 0.1554 and between $z=0$ and $z=1.6$ is 0.4452 <br> (OR) <br> If $10 \%$ of the bolts produced by a machine are defective, determine the probability that out of 10 bolts chosen at random (i) 1 is defective (ii) at most 2 will be defective. | [10] | CO2 |
| :---: | :---: | :---: | :---: |
| 12.B | Consider the initial value problem $\frac{d y}{d x}=x y^{\frac{1}{3}}, y(1)=1$ <br> Using step size $h=0.1$, Find the value of $y(1.1)$ by <br> (i) Taylor series method (considering derivatives up to third order) <br> (ii) Modified Euler's method. <br> (OR) <br> Solve the following initial value problem to obtain $y(1)$ using fourth order Runge-Kutta method with step size $h=0.5$. $\frac{d y}{d x}=y x^{2}-1.2 y, \quad y(0)=1$ | [10] | CO 3 |

## UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, May 2018
Programme: B.Tech (All SOCS Programs)
Course Name: Mathematics II
Course Code: MATH 1005

Semester - II Max. Marks : 100
Duration : $\mathbf{3} \mathbf{~ H r s}$

No. of page/s: 2

| Section A <br> (Attempt all questions) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Probability density function of a continuous random variable $X$ is given by $f(x)=k e^{-x}, 0 \leq x<\infty$. Find $k$ and hence evaluate $P(0<X<1)$. |  |  |  |  |  | [4] | CO2 |
| 2. | Show that $\left(\mathbb{Z}^{+}, /\right)$is a poset, where $a / b$ is defined as 'a divides $b^{\prime}$. |  |  |  |  |  | [4] | CO5 |
| 3. | Show that iterative formula $x_{n+1}=\frac{1}{k}\left[(k-1) x_{n}+\frac{N}{x_{n}^{k-1}}\right]$ to find $\sqrt[k]{N}$ using Newton's Raphson method. |  |  |  |  |  | [4] | CO 3 |
| 4. | In a binomial distribution consisting of 5 independent trials, probabilities of 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the parameter $p$ of the distribution and hence find $P(X>1)$. |  |  |  |  |  | [4] | CO2 |
| 5. | Solve $x y^{2} d x-x^{2} y d y-e^{\frac{1}{x^{3}}} d x=0$ |  |  |  |  |  | [4] | CO1 |
| SECTION B(Q6-Q9 are compulsory and Q10 has internal choice) |  |  |  |  |  |  |  |  |
| 6. | From the following table a half-yearly premium for policies matching at different ages, estimate the premium for a policy matching at the age of 46 and 49 . |  |  |  |  |  | [8] | CO4 |
| 7. | Solve $\left(\frac{d^{2} y}{d x^{2}}+y\right) \cot x+2\left(\frac{d y}{d x}+y \tan x\right)=\sec x$. |  |  |  |  |  | [8] | C01 |
| 8. | Let $A=\{2,3,4,6,12,36,48\}$ be a non-empty set and R be the partial order relation of divisibility defined on A. That is, if $a, b \in A$, then $a$ divides $b$. Draw Hasse diagram of R. |  |  |  |  |  | [8] | $\mathrm{CO5}$ |


| 9. | If $p, q, r, s$ are the successive entries corresponding to equidistant arguments in a table, show that when the third differences are taken into account, the entry corresponding to the argument half way between the arguments at $q$ and $r$ is $[A+(B / 24)]$, where $A$ is the arithmetic mean of $q$ and $r$ and $B$ is arithmetic mean of $3 q-2 p-s$ and $3 r-2 s-p$. | [8] | CO4 |
| :---: | :---: | :---: | :---: |
| 10. | Using appropriate Simpson's rule, evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} d \theta$, taking 10 ordinates. <br> OR <br> The voltage $E=E(t)$ in an electrical circuit obeys the equation $E=L \frac{d I}{d t}+R I(t)$, where R is the resistance and $L$ is the inductance. Use $L=0.05$ and $R=2$ and values for $I(t)$ in the table given below, find $E(1.4)$ | [8] | CO4 |
| SECTION C(Q11 is compulsory and Q12 has internal choice) |  |  |  |
| 11A. | Find the solution of differential equation $y_{2}+(1-\cot x) y_{1}-\cot x y=\sin ^{2} x$. | [10] | CO1 |
| 11B. | Solve the given system of equations $27 x+6 y-z=85 ; \quad 6 x+15 y+2 z=72 ; \quad x+y+54 z=110$ by Gauss-Seidel method correct to three decimal places. | [10] | CO3 |
| 12 A. | A certain number of articles manufactured in one batch were classified into three categories according to a particular characteristic, being less than 50 , between 50 and 60 and greater than 60 . If this characteristic is known to be normally distributed, determine the mean and variation for this batch if $60 \% 35 \%$ and $5 \%$ were found in these categories. $P[0<z<0.2533]=0.1 ; P[0<z<1.645]=0.45$. <br> OR <br> In sampling a large number of parts manufactured be a machine, then mean number of defectives in a sample of 20 is 2 . Out of 1000 such samples, how many would be expected to contain (i) Exactly 3 defective parts (ii) At most 3 defective parts (iii) At least 3 defective parts. | [10] | CO2 |
| 12B. | Find a positive real root of given equation $2 x-\log _{10} x=7$ using fixed-point iteration method correct to four decimal places. <br> OR <br> Using Runge-Kutta method of fourth order, find $y$ for $x=0.1,0.2$ given that $\frac{d y}{d x}=x y+y^{2}, y(0)=1$ and step size $h=0.1$. | [10] | $\mathrm{CO3}$ |

