UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018 Programme: B.Tech. (APE-UP, FSE) Course Name: Applied Numerical Methods Course Code: MATH-307 No. of page/s: 02

Semester – IV Max. Marks : 100 Duration : 3 Hrs

Instructions:

Attempt all questions from **Section A** (each carrying 5 marks); attempt all questions from **Section B** (each carrying 8 marks); attempt all questions from **Section C** (each carrying 20 marks).

	SECTION A SECTION A				
	(Attempt all questions)				
1.	Round off the number 299.995 to 2 decimal places and compute the relative error in your answer.	[5]	CO1		
2.	Consider the equation $f(x)=x^2-x-1$. In order to obtain the zero of $f(x)$ in the interval (1,2), show that the fixed-point iteration scheme $x = \left(\frac{x^2+1}{2x-1}\right) = \varphi(x)$ has a second order convergence.	[5]	CO1		
3.	Suppose k is real and $f(x) = kx^4 + 1$. If the fourth order divided difference of $f(x)$ at the points 1,2,3,4,5 is 5 then find the value of k.	[5]	CO2		
4.	Use composite Trapezoidal rule to evaluate $\int_{0}^{1} \int_{0}^{1} dx dy$ by dividing the range of integration into two equal parts.	[5]	CO3		
	SECTION B				
	(Q5-Q8 are compulsory and Q9 has internal choice)				
5.	Suppose $p(x)$ is a polynomial of degree 2 that interpolates the data $(-1,2), (0,1) \land (1,2)$. If $q(x)$ is a polynomial of degree 3 such that $p(x)+q(x)$ interpolates the data $(-1,2), (0,1), (1,2)$ and $(2,11)$, then find $q(3)$.	[8]	CO2		
6.	Compute the definite integral $I = \int_{-2}^{2} max [x^{3} , x^{2}] dx$ using Simpson's rule by dividing the interval [-2,2] into 4 equal parts. Also compare the result with the actual value of the integral and calculate the absolute error in the calculated value of I.	[8]	СО3		
7.	Use Taylor's series method to obtain $y(0.1)$ correct to 3decimal places, if given that $\frac{dy}{dx} = y + x, y(0) = 1.$	[8]	CO5		

	The fourth order Runge–¿Kutta method		
8.	$u_{j+1} = u_j + \frac{1}{6} [K_1 + 2K_2 + 2K_3 + K_4]$ is used to solve the initial value problem: $\frac{du}{dt} = u, u(0) = \alpha.$ If $u(1) = 1$ is obtained by taking the step size $h = 1$, then find the value of α .	[8]	CO5
9.	Solve $u_t = 5u_{xx}$ with $u(0,t) = 0$; $u(5,t) = 60$ and $u(x,0) = \begin{cases} 20 x \text{ for } 0 < x \le 3 \\ 60 \text{ for } 3 < x \le 5 \end{cases}$; for five time steps taking $h = 1$ by using Bender-Schmidt method. OR Solve $u_t = u_{xx}$ with $u(x,0) = 0$; $u(0,t) = 0$ and $u(1,t) = 1$. Compute u for $t = 1/8$ in two time steps, using Crank-Nicholson's method.	[8]	CO6
	SECTION C (Q10 has internal choice and Q11 is compulsory)		
	Suppose k is non-prime and the matrix $A = \begin{bmatrix} 1 & 1 & k \\ 2 & k & 2 \\ 1 & 3 & 2 \end{bmatrix}$ is such that $det(A) = -1$. Consider the unique decomposition $A = LU$, where $L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix}$ and $U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$. Let $X \in R^3 \land b = [1,1,1]^t$. Find the solution of the system $Ax = b$ where $x = [x, y, z]^t$	[20]	CO4
10.	OR Suppose k is positive and the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & k \\ 1 & k & 3 \end{bmatrix}$ is such that $det(A) = 1$. Consider the unique decomposition $A = LU$, where $L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix}$ and $U = L^T$, where L^T denotes the transpose matrix of L. Let $X \in R^3 \land b = [1,1,3]^t$. Find the solution of the system $Ax = b$ where $x = [x, y, z]^t$.		
11.	Consider an IVP:	[20]	CO5

$$\frac{dy}{dx} = |x-1| + y, y(0) = 1$$

Find the value of $y(1)$ using Euler's method with $h = \frac{1}{4}$.
Also obtain the actual solution of the given IVP and compute the absolute error in the calculated value.