UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2018
Programme: B.Tech. (APE-UP, FSE)
Course Name: Applied Numerical Methods
Semester - IV

Course Code: MATH-307
Max. Marks : 100
Duration : 3 Hrs
No. of page/s: 02

Instructions:

Attempt all questions from Section A (each carrying 5 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

SECTION A
(Attempt all questions)

1.	Round off the number 299.995 to 2 decimal places and compute the relative error in your answer.	[5]	CO1
2.	Consider the equation $f(x)=x^{2}-x-1$. In order to obtain the zero of $f(x)$ in the interval (1,2), show that the fixed-point iteration scheme $x=\left(\frac{x^{2}+1}{2 x-1}\right)=\varphi(x)$ has a second order convergence.	[5]	CO1
3.	Suppose k is real and $f(x)=k x^{4}+1$. If the fourth order divided difference of $f(x)$ at the points $1,2,3,4,5$ is 5 then find the value of k.	[5]	CO2
4.	Use composite Trapezoidal rule to evaluate $\int_{0}^{1} \int_{0}^{1} d x d y$ by dividing the range of integration into two equal parts.	[5]	CO3
SECTION B(Q5-Q8 are compulsory and Q9 has internal choice)			
5.	Suppose $p(x)$ is a polynomial of degree 2 that interpolates the data $(-1,2),(0,1) \wedge(1,2)$. If $q(x)$ is a polynomial of degree 3 such that $p(x)+q(x)$ interpolates the data $(-1,2),(0,1),(1,2)$ and $(2,11)$, then find $q(3)$.	[8]	CO2
6.	Compute the definite integral $I=\int_{-2}^{2} \max \left\{\left\|x^{3}\right\|, x^{2}\right\} d x$ using Simpson's rule by dividing the interval $[-2,2]$ into 4 equal parts. Also compare the result with the actual value of the integral and calculate the absolute error in the calculated value of I.	[8]	CO 3
7.	Use Taylor's series method to obtain $y(0.1)$ correct to 3decimal places, if given that $\frac{d y}{d x}=y+x, y(0)=1$.	[8]	$\mathrm{CO5}$

8.	The fourth order Runge-iKutta method $u_{j+1}=u_{j}+\frac{1}{6}\left[K_{1}+2 K_{2}+2 K_{3}+K_{4}\right]$ is used to solve the initial value problem: $\frac{d u}{d t}=u, u(0)=\alpha .$ If $u(1)=1$ is obtained by taking the step size $h=1$, then find the value of α.	[8]	$\mathrm{CO5}$
9.	Solve $u_{t}=5 u_{x x}$ with $u(0, t)=0 ; u(5, t)=60$ and $u(x, 0)=\left\{\begin{array}{c}20 x \text { for } 0<x \leq 3 \\ 60 \text { for } 3<x \leq 5\end{array}\right.$; for five time steps taking $h=1$ by using Bender-Schmidt method. OR Solve $u_{t}=u_{x x}$ with $u(x, 0)=0 ; u(0, t)=0$ and $u(1, t)=1$. Compute u for $t=1 / 8$ in two time steps, using Crank-Nicholson's method.	[8]	CO6
SECTION C (Q10 has internal choice and Q11 is compulsory)			
10.	Suppose k is non-prime and the matrix $A=\left[\begin{array}{lll}1 & 1 & k \\ 2 & k & 2 \\ 1 & 3 & 2\end{array}\right]$ is such that $\operatorname{det}(A)=-1$. Consider the unique decomposition $A=L U$, where $L=\left[\begin{array}{ccc} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{array}\right] \text { and } U=\left[\begin{array}{ccc} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{array}\right] \text {. }$ Let $X \in R^{3} \wedge b=[1,1,1]^{t}$. Find the solution of the system $A x=b$ where $x=[x, y, z]^{t}$ OR Suppose k is positive and the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & k \\ 1 & k & 3\end{array}\right]$ is such that $\operatorname{det}(A)=1$. Consider the unique decomposition $A=L U$, where $L=\left[\begin{array}{ccc} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{array}\right] \text { and } U=L^{T} \text {, where } L^{T} \text { denotes the transpose }$ matrix of L. Let $X \in R^{3} \wedge b=[1,1,3]^{t}$. Find the solution of the system $A x=b$ where $x=[x, y, z]^{t}$	[20]	$\mathrm{CO4}$
11.	Consider an IVP:	[20]	CO5

| $\frac{d y}{d x}=\|x-1\|+y, y(0)=1$ | |
| :--- | :--- | :--- |
| Find the value of $y(1)$ using Euler's method with $h=\frac{1}{4}$. | |
| Also obtain the actual solution of the given IVP and compute the absolute error in
 the calculated value. | |

