\qquad

1 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester	Examination, May 2018
Programme:	B.Tech (Mechanical, ADE)
Course Name:	Applied Numerical Techniques
Course Code:	MATH 305
No. of page/s:	03

Semester - VI
Max. Marks : 100
Duration : 03 Hrs.

Instructions:
Attempt all questions from Section \mathbf{A} (each carrying 5 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section \mathbf{C} (each carrying 20 marks).

Section A
 (Attempt all questions)

1.	Express the function $f(x)=2 x^{3}-3 x^{2}+3 x-10$ in factorial notation.	[5]	CO1
2.	Let $x_{0}=1.5$ be the initial approximation of a root of the equation $x^{2}+\log _{e} x-2=0$ Find an approximate root of the equation using fixed point iteration method (iteration method), correct upto three significant digits.	[5]	$\mathrm{CO3}$
3.	By considering five terms of Taylor's series, evaluate $y(0.2)$ from the following differential equation $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0 .$	[5]	CO5
4.	Consider the following boundary value problem (BVP). $\frac{d^{2} y}{d x^{2}}-y=x^{4}, 0 \leq x \leq 1$ with the boundary conditions $y(0)=0$ and $y(1)=0$. Choose two basis functions $\phi_{1}(x)$ and $\phi_{2}(x)$ for an approximate solution $\bar{y}=a_{1} \phi_{1}(x)+a_{2} \phi_{2}(x)$. Hence find the residual.	[5]	CO6
SECTION B(Q5-Q8 are compulsory and Q9 has internal choice)			
5.	Solve the equation $x-\log _{e}(2 x+2)=0$, for the root in (1,2), by Regula-Falsi method, correct upto four significant digits.	[8]	CO 3

6.	Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h=0.1$, given that $\frac{d y}{d x}=x^{2}+y^{2}$ with initial condition $y(1)=1.5$.	[8]	$\mathrm{CO5}$
7.	Evaluate the integration $\int_{0}^{\frac{\pi}{2}} \sqrt{1-k \sin ^{2} \phi} d \phi, k=0.162$, by Simpson's $\frac{1}{3}$ rule, dividing the interval $0 \leq \phi \leq \frac{\pi}{2}$ into six equal subintervals.	[8]	CO2
8.	Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{d y}{d x}=-k y, \text { where } k=0.01$ Given that $x_{0}=0$ and $y_{0}=100$. Determine how much substance will remain at the moment $x=100$, using Modified Euler's method with the step-length $h=50$.	[8]	CO5
9.	Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then apply Gauss-Seidel method to evaluate an approximate solution, taking the initial approximation as $x_{1}^{(0)}=1, x_{2}^{(0)}=1, x_{3}^{(0)}=1$. Perform three iterations. $\begin{gathered} x_{1}+3 x_{2}-x_{3}=5 \\ 3 x_{1}-x_{2}=5 \\ x_{2}+2 x_{3}=1 . \end{gathered}$ OR Using Gauss-Jacobi method, solve the following system of equations starting with initial solution as $x_{1}^{(0)}=\frac{9}{5}, x_{2}^{(0)}=\frac{4}{5}, x_{3}^{(0)}=\frac{6}{5}$. Perform three iterations. $\begin{gathered} 5 x_{1}-x_{2}=9 \\ -x_{1}+5 x_{2}-x_{3}=4 \\ -x_{2}+5 x_{3}=-6 . \end{gathered}$	[8]	CO4
SECTION C(Q10 is compulsory and Q11.A and Q11.B have internal choices)			
10.A	Consider the system of equations $\begin{gathered} x_{1}+6 x_{2}+2 x_{3}=9 \\ 2 x_{1}+12 x_{2}+5 x_{3}=-4 \\ -x_{1}-3 x_{2}-x_{3}=17 \end{gathered}$ i. Show that the coefficient matrix $\left[\begin{array}{ccc}1 & 6 & 2 \\ 2 & 12 & 5 \\ -1 & -3 & -1\end{array}\right]$ does not have an LUdecomposition.	[10]	CO4


	```ii. Re-arrange the equations, and find the LU-decomposition of the new coefficient matrix. iii. Hence solve the system by LU-decomposition technique (Crout's method).```		
10.B	Find the smallest positive root of the equation $10^{x}+x-4=0$, by NewtonRaphson method, correct upto three decimal places.	[10]	CO 3
11.A	Let a function $f(x)$ be known for $(n+1)$ distinct equi-spaced arguments, namely $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ such that $x_{r}=x_{0}+r h$, where $h$ is the step length, and the corresponding arguments are given by $y_{j}=f\left(x_{j}\right)$, for $j=0,1,2, \ldots, n$. Derive Newton's forward interpolation formula to find an approximate polynomial $p(x)$ of degree less than equal to $n$ which satisfies the conditions $p\left(x_{j}\right)=f\left(x_{j}\right)=y_{j}$, for $j=0,1,2, \ldots, n$.   OR   Let a function $f(x)$ be known for $(n+1)$ arguments, namely $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$, which are not necessarily equi-spaced, and $y_{j}=f\left(x_{j}\right)$, for $j=0,1,2, \ldots, n$ be the corresponding entries. Derive Newton's divided difference interpolation formula to construct an approximate polynomial $\phi(x)$ of degree less than equal to $n$ which satisfies the conditions $\phi\left(x_{j}\right)=f\left(x_{j}\right)=y_{j}$, for $j=$ $0,1,2, \ldots, n$.	[10]	CO1
11.B	Consider the following boundary value problem (BVP) $\begin{gathered} \frac{d^{2} y}{d x^{2}}-y=x^{2}, 0 \leq x \leq 1 \\ y(0)=1, y(1)=0 \end{gathered}$   Find an approximate solution $\bar{y}(x)=a_{1} \phi_{1}(x)+a_{2} \phi_{2}(x)$ by Galerkin's method. Consider the basis functions $\phi_{1}(x)=(1-x)$ and $\phi_{2}(x)=(1-x)^{2}$.   OR   Find an approximate solution of the following problem by Subdomain (Partition) method diving the interval $0 \leq x \leq 1$ two equal subintervals and using the basis functions $\phi_{1}(x)=(1-x)$ and $\phi_{2}(x)=(1-x)^{2}$. $\begin{gathered} \frac{d^{2} y}{d x^{2}}-y=x, 0 \leq x \leq 1 \\ y(0)=1, y(1)=0 \end{gathered}$	[10]	CO6

