Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018			
Course: Mechanics of Solids (GNEG 215) Semester: IV Program: B. Tech - Mechatronics Time: 03 hrs. Max. Marks: 100 Instructions: 1. ALL QUESTIONS ARE COMPULSORY 2. No. of pages - 05			
SECTION A			
S. No.	Statement of question	Marks	CO
Q 1	The five-bolt connection shown in figure below, must support an applied load of $\mathrm{P}=$ 300 kN . If the average shear stress in the bolts must be limited to 225 MPa , determine the minimum bolt diameter that may be used in the connection.	5	CO4
Q 2	A picture is taken of a man performing a pole vault, and the minimum radius of curvature of the pole is estimated by measurement to be 4.5 m . If the pole is 40 mm in diameter and it is made of a glass-reinforced plastic for which $\mathrm{Eg}_{\mathrm{g}}=131 \mathrm{GPa}$, determine the maximum bending stress in the pole.	5	CO2

Q 3	The rotor shaft of a helicopter (see figure part a) drives the rotor blades that provide the lifting force and is subjected to a combination of torsion and axial loading (see figure part b). Find the normal and shear stress at a plane inclined at an angle of 35° in clockwise direction from x face.	5	CO 3
Q 4	A bar made of A-36 steel has the dimensions shown in figure below. If an axial force of $\mathrm{P}=80 \mathrm{kN}$ is applied to the bar, determine the change in its length and the change in the thickness after applying the load. The material behaves elastically. $\mathrm{E}=190 \mathrm{GPa}$ and poisonn's ratio is 0.35 .	5	CO1
SECTION B			
Q 5	Explain why failure of this garden hose occurred as tear along its length. Assume the water pressure is 0.2 MPa . Assume if any additional data is required. OR	10	CO 3

	The 30 -mm-diameter shaft of the wind turbine carries an axial thrust of 50 kN and transmits 2.5 kW of power at 200 rpm . Determine the maximum normal stress in the shaft.		
Q 6	A 2-m-long pin-ended column of square cross section is to be made of wood. Assuming E $=13 \mathrm{GPa}$, and allowable stress as 12 MPa , and using Euler's critical load for buckling, determine the size of the cross section if the column is to safely support a $100-\mathrm{kN}$ load.	10	CO4
Q 7	The solid rod AB has a diameter $\mathrm{d}_{\mathrm{AB}}=60 \mathrm{~mm}$. the pipe CD has an outer diameter of 90 mm and a wall thickness of 6 mm . Knowing that both the rod and the pipe are made of steel for which the allowable shearing stress is 75 MPa , determine the largest torque T that can be applied at A.	10	CO2
Q 8	Both portions of the rod ABC are made of an aluminum for which $\mathrm{E}=70 \mathrm{GPa}$. Knowing that the magnitude of P is 4 kN , determine (a) the value of Q so that the deflection at A is zero, (b) the corresponding deflection of B .	10	CO1

SECTION-C			
Q 9	A pipe with an outside diameter of 220 mm and a wall thickness of 5 mm is subjected to the load shown in figure below. The internal pressure in the pipe is $2,000 \mathrm{kPa}$. A) Determine the normal and shear stresses on the top surface of the pipe at point H . B) Find the factor of safety if yield stress in tension is 300 MPa by using maximum shear stress theory.	20	CO3
Q 10	For the beam as shown in the figure below - a) Draw the shear force diagram and bending moment diagram. b) Find the deflection and slope at point B and C using Macaulay's method. $\left(\mathrm{E}=200 \mathrm{GPa}, \mathrm{I}=65^{*} 10^{-6} \mathrm{~mm}^{4}\right)$ For the beam as shown in the figure below - a) Draw the shear force and bending moment diagram	20	CO2

