Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Mechanics of Solids (GNEG 215) **Program:** B. Tech – Mechatronics **Time: 03 hrs.** Semester: IV

Max. Marks: 100

Instructions:

- 1. ALL QUESTIONS ARE COMPULSORY
- 2. No. of pages 05

SECTION A

S. No.	Statement of question	Marks	CO
Q 1	The five-bolt connection shown in figure below, must support an applied load of $P = 300 \text{ kN}$. If the average shear stress in the bolts must be limited to 225 MPa, determine the minimum bolt diameter that may be used in the connection.	5	CO4
Q 2	A picture is taken of a man performing a pole vault, and the minimum radius of curvature of the pole is estimated by measurement to be 4.5 m. If the pole is 40 mm in diameter and it is made of a glass-reinforced plastic for which $E_g = 131$ GPa, determine the maximum bending stress in the pole.	5	CO2

	The 30-mm-diameter shaft of the wind turbine carries an axial thrust of 50 kN and		
	transmits 2.5 kW of power at 200 rpm. Determine the maximum normal stress in the shaft.		
Q 6	A 2-m-long pin-ended column of square cross section is to be made of wood. Assuming $E = 13$ GPa, and allowable stress as 12 MPa, and using Euler's critical load for buckling, determine the size of the cross section if the column is to safely support a 100-kN load.	10	CO4
Q 7	The solid rod AB has a diameter $d_{AB} = 60$ mm. the pipe CD has an outer diameter of 90 mm and a wall thickness of 6 mm. Knowing that both the rod and the pipe are made of steel for which the allowable shearing stress is 75 MPa, determine the largest torque T that can be applied at A.	10	CO2
Q 8	Both portions of the rod ABC are made of an aluminum for which $E = 70$ GPa. Knowing that the magnitude of P is 4 kN, determine (a) the value of Q so that the deflection at A is zero, (b) the corresponding deflection of B. $ \int_{0.4 \text{ m}} \int_{0.4 \text{ m}} \int_{0.5 \text{ m}$	10	CO1

