UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Mathematical Modeling & Simulation of Aerospace Vehicles Program: B.Tech/ASE+AVE Time: 03 hrs.

Instructions: Make use of *sketches/plots* to elaborate your answer. Brief and to the point answers are expected. The Question paper has three sections: Section A, B and C, Section B and C have internal choices.

S. No.		Marks	CO
Q 1	Explain esoteric and manufacturing systems	04	CO 1
Q 2	Write the body fixed velocity vector for an aircraft and explain with the schematic diagram	04	CO 2
Q 3	List down the linear state space model for an aircraft under linear perturbation along longitudinal and lateral directions.	04	CO 3
Q 4	Differentiate between kinetics and kinematics for the system body	04	CO 3
Q 5	List down the various differences in solving Ordinary differential equation and Partial Differential Equations for the aircraft dynamic system equation.	04	CO 4
	SECTION B		
Q 6	The rotational mechanical system is as shown in the Figure 1. Determine the mathematical model to develop the relation between input and output variables. $ \begin{array}{c} T_1 \\ \end{array} \\ \hline \\ I_1 \\ \hline \\ \theta_1 \\ \end{array} \begin{array}{c} T_2 \\ \hline \\ \theta_2 \\ \hline \\ Figure 1 \end{array} $	10	CO 1
Q 7	Define the term 'perturbation'. How would you classify the nominal and perturbation values? Write the equation for same. Using this theory, linearize the rigid body kinetics under equilibrium condition. Also, provide the equation of surge using the linearized perturbation theory.	10	CO 2
Q 8	Discuss the block diagram as shown in Figure 2.	10	CO 3

Max. Marks: 100

SECTION A

Semester: VIII

	ADC Continuous time inputs ADC Discrete time inputs Discrete time outputs Figure 2		
Q 9	Define and explain the principle of superposition involved in solving the linear and non-linear partial differential equations for the aircraft dynamics and control. Sketch the schematic diagram for the same. Figure 1	10	CO 4
	SECTION-C		
Q 10	Figure 3 shows a dc motor circuit with a load connected to the motor shaft. Assume that the shaft is rigid, has negligible mass, and has no torsional spring effect or rotational damping associated with it. Derive an expression for the mathematical model for the system. V_a V_a C V_a C I_M I_L $Load$ I_L	20	CO 1
Q 11	Figure4 shows a room heated with an electric heater. The inside of the room is at temperature Tr and the walls are assumed to be at temperature Tw . If the outside temperature is To , develop a model of the system to show the relationship between the supplied heat q and the room temperature Tr . Write the program to show the thermal variation wrt time. Heater T_r and T_r	20	CO 3

<i>OR</i> The longitudinal and lateral B-767 state-space models are given below. The state vectors are: $\begin{bmatrix} u \text{ (ft/s)} \\ \alpha \text{ (deg)} \end{bmatrix} \begin{bmatrix} \beta \text{ (deg)} \\ p \text{ (deg/s)} \end{bmatrix}$	
$\mathbf{x}_{\text{lang}} = \begin{bmatrix} u \ (\text{ft/s}) \\ \alpha \ (\text{deg}) \\ q \ (\text{deg/s}) \\ \theta \ (\text{deg}) \end{bmatrix}, \mathbf{x}_{\text{lat}} = \begin{bmatrix} \beta \ (\text{deg}) \\ p \ (\text{deg/s}) \\ \phi \ (\text{deg/s}) \\ r \ (\text{deg}) \end{bmatrix}$ $\mathbf{u}_{\text{lang}} = \begin{bmatrix} \delta_E \ (\text{deg}) \\ \delta_T \ (\%) \end{bmatrix}, \mathbf{u}_{\text{lat}} = \begin{bmatrix} \delta_A \ (\text{deg}) \\ \delta_R \ (\text{deg}) \end{bmatrix}$ Equilibrium point:	
Speed $V_T = 890 \text{ ft/s} = 980 \text{ km/h}$ Altitude $h = 35 000 \text{ ft}$ Mass $m = 184 000 \text{ lbs}$ Mach-number $M = 0.8$ Simulate Longitudinal and Lateral model for the aircraft equations in MATLAB	

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Mathematical Modeling & Simulation of Aerospace Vehicles	Semester: VIII
Program: B.Tech/ASE+AVE	
Time: 03 hrs. Max.	Marks: 100

Instructions: Make use of *sketches/plots* to elaborate your answer. Brief and to the point answers are expected. **The Question paper has three sections: Section A, B and C, Section B and C have internal choices.**

S. No.		Marks	CO
Q 1	Explain Environmental system and transportation system.	04	CO 1
Q 2	Explain aircraft state space vectors and body –fixed coordinate systems.	04	CO 2
Q 3	Define wind and stability axes used for the study and analysis of aircraft modeling	04	CO 3
Q 4	Describe longitudinal and lateral forces which acts on the aircraft with schematic diagram.	04	CO 3
Q 5	Differentiate between discrete and time variant systems used for the modeling to simulate the results.	04	CO 4
	SECTION B		
Q 6	Define and explain the principle of superposition involved in solving the linear and non-linear partial differential equations for the aircraft dynamics and control. Sketch the schematic diagram for the same.	10	CO 4
Q 7	Discuss the block diagram as shown in Figure 1. Discuss the block diagram as shown in Figure 1. ADC Discrete time time inputs Discrete time Discrete time Discrete time Discr	10	CO 3
Q 8	Define the term 'perturbation'. How would you classify the nominal and perturbation values? Write the equation for same. Using this theory, linearize the rigid body	10	CO 2

SECTION A

UPES

	kinetics under equilibrium condition. Also, provide the equation of surge using the linearized perturbation theory.		
Q 9	Write the MATLAB code for the system having the ordinary differential equation for the mass, spring and damping factor values for the time span of i) 0-25s, ii) 0-50s and iii) 0-100s.Compare the result over on the pictorial analysis.	10	CO 1
	SECTION-C		
Q 10	Figure 2 shows a dc motor circuit with a load connected to the motor shaft. Assume that the shaft is rigid, has negligible mass, and has no torsional spring effect or rotational damping associated with it. Derive an expression for the mathematical model for the system.		
	V_a V_a C	20	CO 1
	OI_L Load Figure 2		
Q 11	An airplane uses a brake parachute and other means of braking as it slows down on the runway after landing as shown in Figure 3. Its acceleration is given by $a = -0.0045 v^2 - 3 \text{ m/s}^2$. Consider an airplane with a velocity of 300 km/h that opens its parachute and starts deceleration at $t = 0$ s. Determine:	20	CO 3
	 (a) Velocity as function of time from t = 0 until airplane stops. (b) Distance that airplane travels as a function of time. 		
	Figure 3		
	OR The lateral model of the F-16 .Fighter aircraft. The state vectors are:		

$\mathbf{x}_{\text{lat}} = \begin{bmatrix} \beta \text{ (ft/s)} \\ \phi \text{ (ft/s)} \\ p \text{ (rad/s)} \\ r \text{ (rad)} \\ \delta_A \text{ (rad)} \\ \delta_R \text{ (rad)} \\ r_w \text{ (rad)} \end{bmatrix}, \mathbf{u}_{\text{lat}} = \begin{bmatrix} u_A \text{ (rad)} \\ u_R \text{ (rad)} \end{bmatrix}, \mathbf{y}_{\text{lat}} = \begin{bmatrix} r_w \text{ (deg)} \\ p \text{ (deg/s)} \\ \beta \text{ (deg)} \\ \phi \text{ (deg)} \end{bmatrix}$ Equilibrium point:	
Speed $V_T = 502 \text{ ft/s} = 552 \text{ km/h}$ Mach-number $M = 0.45$ Calculate the Longitudinal and Lateral values using the equations and simulate in	
MATLAB.	