Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Design of Aerospace Vehicles Program: B. Tech Aerospace Engineering Time: 03 hrs. Semester: VIII

Max. Marks: 100

Instructions:/Design DATA and formula sheet for shall be provided

	SECTION A (5x4=20 Marks)		
S. No.		Marks	CO
Q1	Identify the design requirements of a Light Sport Aircraft (LSA).	4	CO1
Q2	What are the design structural limits on <i>load factor</i> and <i>velocity</i> diagram of airplane?	4	CO2
Q3	Describe the steps for conceptual design of aircraft with help of flowchart.	4	CO4
Q4	What do you mean by fuel fraction of the airplane? Explain briefly.	4	CO4
Q5	What do you mean by Mass Ratio (MR) of Rockets? Explain briefly.	4	CO5
	SECTION B (4x10=40 Marks)		
Q 6	A) An airplane has the following features: Weight of the payload+crew=30000 N Estimated fuel fraction $(W_f/W_0)=0.387$ Empty Weight fraction $(W_eW_0)=0.837(W_0)^{-0.7}$ Estimate Gross Weight (W_0) of Airplane.	5	CO1
	B) Derive expression for <i>wing loading</i> (W/S) from given load factor (<i>n</i>) for <i>turning maneuver</i> (<i>s</i>) of fighter aircraft.	5	CO2
Q7	What are different non-dimensional wing design parameters of a wing? Describe the design process for wing design of an aircraft.	10	CO3
Q8	 A) An airplane has the following features: No. of Passengers 450 Range of Flight=12000 Km Draw Mission Profile and Calculate Gross Weight of Airplane 	6	CO4
	 B) Design fuselage, horizontal and vertical tail for an aircraft with following Data: Gross Weight 3000 kg Maximum level speed at mid cruise 0.3 Mach 	4	CO4
Q9	What are the different Mission profiles of launch vehicles? Describe them in detail.	10	CO5

Q10	(Q9 or Q10) What is the design criterion to ensure required stability and control of space launch vehicle? Derive the relation for necessary condition of the same.	10	CO5	
SECTION-C(40 Marks)				
Q11	Design a Transport Aircraft for 2000 kg payload carrying capacity with the following performance requirements. Maximum level speed at mid cruise 500 Km/hr Range 4000 km Ceiling 8000 meters Rate of climb at sea level 300 m/min Staling speed 110 Km/hr Landing distance 700 m Take-off distance 800 m	20	CO4	
Q 12.	A) Consider a private four seater aircraft with the following characteristics: Cruise Mach number 0.2; cruise altitude=4,000 m, wing loading= $100 \text{ kg},m^2$, Take-off weight=5,000 kg. Design the main wing that would be suitable for this aircraft along with the sketch. Justify all of selections	10	CO3	
	B) What is the design criterion to ensure required stability and control of space launch vehicle? Derive the relation for necessary condition of the same.	10	CO5	