Name: Enrolment No:			
Cour Progr Time: Instru The Q	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April 2018 tions: Make use of sketches/plots to elaborate your answer. Brief and to the point answ stion paper has three sections: Section A, B and C. Section B and C have internal choices.	100 s are ex	ted.
SECTION A [20 Marks]			
S. No.		Marks	CO
Q 1.	Determine the shape functions for the five-node rectangular element shown in the fig.	[04]	CO1
Q 2.	What do you mean by weak form of the differential equation? State the advantages of the weak form over the weighted residual method.	[04]	$\mathrm{CO3}$
Q 3.	Consider a single spring element with the given notations, Using the spring-displacement relationship, derive the expression, $\mathbf{k u}=\mathbf{f}$ where, $\mathrm{k}=$ (element) stiffness matrix, $\mathrm{u}=$ (element nodal) displacement vector $\mathrm{f}=$ (element nodal) force vector	[04]	CO 2
Q 4.	What is the difference between "sub-structuring" and "sub-modeling"?	[04]	CO 2
Q 5.	State the type of finite element(s) that are best to use when performing the structural analysis for each of the following situations. (i) A calculator housing under load from being sat on (ii) The floor of a house loaded with furniture. The floor has wooden joists (beams) and plywood flooring. (iii)A coffee cup loaded with coffee, where we are interested in the stresses where the handle joins the cup.	[04]	CO 4

SECTION B [40 Marks]

SECTION B [40 Marks]			
Q 6.	Consider a simply supported beam under uniformly distributed load as shown in figure below. The governing differential equation and the boundary conditions are given by, $E I \frac{d^{4} v}{d x^{4}}-q_{0}=0 ; \quad v(0)=0, \frac{d^{2} v}{d x^{2}}(0)=0, v(L)=0, \frac{d^{2} v}{d x^{2}}(L)=0$ Find the approximate solution using the point collocation technique at $x=L / 2$. Assume a one parameter trial solution: $v(x) \approx \hat{v}(x)=c_{1} \sin (\pi x / L)$	[10]	CO 3
Q 7.	Describe briefly the Method of Weighted Residuals (MWR). Furthermore, explain the application of MWR in the Method of Collocation by Sub-Regions.	[10]	CO4
Q 8.	Solve the following equation using a two-parameter trial solution by (a) the point collocation at $\mathrm{x}=1 / 4$ and $\mathrm{x}=1 / 2$; (b) the Rayleigh-Ritz method. $\frac{d y}{d x}+y=0 ; \quad y(0)=1$	[10]	CO2
Q 9.	Consider the spring mounted bar as shown in the figure. Solve for the displacements of points P and Q using bar elements (assume $A E=$ constant)	[10]	CO4

SECTION-C [40 Marks]

Q 10. Consider a 1 mm diameter, 50 mm long aluminum pin fin as shown in the figure below that is used to enhance the heat transfer from a surface wall maintained at $300^{\circ} \mathrm{C}$. The governing differential equation and the boundary conditions are given by,

[20]
CO3

$$
k \frac{d^{2} T}{d x^{2}}=\frac{P h}{A_{c}}\left(T-T_{\infty}\right) ; \quad T(0)=T_{w}=300^{\circ} C, \quad \frac{d T}{d x_{(\mathrm{L})}}=0
$$

Let $k=200 \mathrm{~W} / \mathrm{m} /{ }^{\circ} \mathrm{C}$ for aluminum, $h=20 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}, T_{\infty}=30^{\circ} \mathrm{C}$. Estimate the temperature distribution in the fin at 10 equal points using the Galerkin residual method using an appropriate polynomial trial function.
Q 11. Derive the Euler-Lagrange equation for a functional given by,

$$
I(u)=\int_{a}^{b} F\left(u, \frac{d u}{d x}, x\right) d x
$$

Thus, obtain the corresponding Euler-Lagrange for the functional given below,

$$
I=\frac{1}{2} \int_{0}^{L}\left[\propto\left(\frac{d y}{d x}\right)^{2}-\beta y^{2}+r y x^{2}\right] d x-y(L)
$$

or
A 3 node rod element has a quadratic shape function matrix:

$$
\mathbf{N}=\left\langle 1-\frac{3 x}{L}+\frac{2 x^{2}}{L^{2}} \frac{4 x}{L}-\frac{4 x^{2}}{L^{2}}-\frac{x}{L}+\frac{2 x^{2}}{L^{2}}\right\rangle
$$

For $L=1 \mathrm{~m}, E=200 \times 10^{9} \mathrm{~Pa}, U_{1}=0, U_{2}=5 \times 10^{-6} \mathrm{~m}$, and $U_{3}=5 \times 10^{-6} \mathrm{~m}$, find:
a. The displacement U at $x=0.25 \mathrm{~m}$.
b. The strain as a function of x.
c. The strain at $x=0.25 \mathrm{~m}$.
d. The stress at $x=0.25 \mathrm{~m}$.

