

Enrolment No:

Semester: VIII

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: DIGITAL IMAGE PROCESSING

Program: B.TECH. ICE- VIII

Time: 03 hrs. Max. Marks: 100

SECTION A (20 Marks)					
S. No.		Marks	CO		
Q 1	For any system transformation as shown in Eq. 1 below, write the corresponding associativity, distributive and commutative properties assuming $h(x)$ and $f(x)$ as impulse response and input function respectively. $g(x) = L[f(x)] = f(x) * h(x)(1)$	5	CO1		
Q 2	Prove that 2D-DFT has following expression for image analysis. $F = \frac{1}{MN} W_M f W_N$		CO2		
Q 3	Explain Fast Fourier Transform (FFT) in detail for digital image processing applications.	5	CO3		
Q 4	Discuss 2-component image model in detail.	5	CO2		
	SECTION B (40 Marks)	<u> </u>			
Q 5	Explain topological data structures with the help of RAG (region adjacency graph).	10	CO3		
Q 6	Explain following relational structures: (i) Pyramids (ii) Quadtrees	10	CO4		
Q 7	Explain different types of image pre-processing in detail.	10	CO5		
Q 8	Name the following image operator application and discuss in detail. $\frac{1}{9}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}, \frac{1}{10}\begin{bmatrix}1&1&1\\1&2&1\\1&1&1\end{bmatrix}$	10	CO1		
	SECTION-C (40 Marks)				
Q 9	(i) Discuss the significance of operator based on following components:	20	CO4		

	(i)	$ \operatorname{grad} g(x,y) = \sqrt{\left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2}$ $\psi = \operatorname{arg}\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right),$ For the given image, apply any 3 x 3 edge operator. $100 0 0 255 1 3$ $200 9 12 34 90 120$ $98 23 90 45 87 2$ $87 5 10 54 11 12$ $1 5 9 9 8 1$		
Q 10	(ii) (i)	0 7 9 0 1 1 Derive expression for Canny edge detection algorithm.	10	CO3
	(ii)	Explain frequency domain local pre-processing in detail, and derive appropriate image processing for following image transformation.	10	CO4

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Semester: VIII

Course: DIGITAL IMAGE PROCESSING

Program: B.TECH. ICE- VIII

Time: 03 hrs. Max. Marks: 100

Instructions: ATTEMPT ALL QUESTIONS					
	SECTION A (20 Marks)				
S. No.		Marks	CO		
Q 1	Explain Object-space scanning (rotating mirror) image scanning method in detail.	5	CO1		
Q 2	Discuss 2-d filter design using frequency sampling technique for digital image processing applications.	5	CO2		
Q 3	Explain DCT (Discrete Cosine transform) with the help of equations.	5	CO3		
Q 4	Explain relational structures with the help of Quadtrees.	5	CO4		
	SECTION B (40 Marks)				
Q 5	Explain different edge detector operators. (atleast 5 operators 3 x 3 size)	10	CO3		
Q 6	Derive RAG (regions adjacency graph) for following: 0 1 4 5	10	CO2		
Q 7	Break the following 5 x 5 operator into two separate operators of 1 x 5 and 5 x 1 size. \[\begin{align*} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{align*} \]	10	CO3		

Q 8	(i) (ii)	Enumerate major differences between CCD and CMOS sensor. Discuss linear integral transforms in detail.	10	CO1
	()	SECTION-C (40 Marks)		
Q 9	(ii) (iii)	Explain JPEG-2000 encoding in detail, with the help of necessary transformation block diagram. For the given image, apply any 3 x 3 edge operator. 100 0 0 255 1 3 200 9 12 34 90 120 98 23 90 45 87 2 87 5 10 54 11 12 1 5 9 9 8 1	20	CO5
Q 10	(i)	0 7 9 0 1 1 Discuss Chains in detail.	10	CO4
	(i)	Derive chain code for following: 8-connected 4 5 6	10	