UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Computational Fluid Dynamics Program: B. Tech. ASE, ASE+AVE Time: 03 hrs.

Semester: VIII

Max. Marks: 100

Instructions: The question paper has 03 pages.

	SECTION A (5 x 4 =20 Marks)				
S. No.		Marks	СО		
Q 1	Write the full Navier-Stokes equation in strong conservation form. Elaborate the significance of each term.		CO1		
Q 2	List down examples of flows governed by elliptic, parabolic, hyperbolic and mixed partial differential equations.		CO2		
Q 3	Discuss the advantages and disadvantages of structured and unstructured grids.		CO3		
Q 4	Explain the difference between finite difference and finite volume methods.		CO5		
Q 5	Show that a proper choice of <i>weight function</i> makes the weighted residual formulation equivalent to Finite difference or Finite Volume Methods.		CO6		
	SECTION B (4 x 10 = 40 Marks)				
Q 6	Derive a second order accurate stencil for the mixed derivative $\frac{\partial^2 u}{\partial x dy}$.		CO3		
Q 7	Explain the UPWIND interpolation scheme for the evaluation of fluxes at face centre using the nodal values on a structured finite volume grid and estimate its accuracy. Find an expression for the artificial diffusivity introduced by this scheme.				
	<i>OR</i> Explain the CDS interpolation scheme for the evaluation of fluxes at face centre using the nodal values on a structured finite volume grid. Find the order of accuracy of this scheme.		CO5		
Q 8	List down stepwise procedure for the solution of governing partial differential equation using Finite Element Discretization.		CO5		
Q 9	Consider the 2-dimensional transient heat conduction equation given below. The Crank-Nicolson discretization of the equation results in a pentadiagonal system of equations. Describe the Alternating Direction Implicit (ADI) technique to solve the		CO6		

	system of equations iteratively.					
	$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$					
	SECTION-C (2 x 20 =40 Marks)					
Q 10	An explicit scheme for solving the first-order wave equation is given by:					
	$u_j^{n+1} = u_j^n - \frac{c\Delta t}{\Delta x} \left(u_j^n - u_{j-1}^n \right)$					
	Apply the Fourier stability analysis to this scheme, and determine the stability restrictions, if any.					
	OR					
	Derive the modified equation that emanates from the first order forward in time and	CO4				
	backward in space discretization of the first order wave equation given below.	04				
	$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$					
	Discuss the effect of dominating error for the above discretization and suggest means to minimize it.					
Q 11	Consider the function $\phi(x, y) = e^x + e^y$. Consider the point $(x, y) = (1, 1)$	CO6				
	a. Calculate the exact values of $\frac{\partial \phi}{\partial x}$ and $\frac{\partial \phi}{\partial y}$ at this point.					
	b. Use first order forward differences, with $\Delta x = \Delta y = 0.1$, to calculate					
	approximate values of $\frac{\partial \phi}{\partial x}$ and $\frac{\partial \phi}{\partial y}$ at point (1, 1). Calculate the					
	percentage difference when compared with the exact values from part					
	(a).					
	c. Use first order rearward differences with $\Delta x = \Delta y = 0.1$, to calculate					
	approximate values of $\frac{\partial \phi}{\partial x}$ and $\frac{\partial \phi}{\partial y}$ at point (1, 1). Calculate the					
	percentage difference when compared with the exact values from part					

(a).	
d. Use second order central differences, with $\Delta x = \Delta y = 0.1$, to calculate	
approximate values of $\frac{\partial \phi}{\partial x}$ and $\frac{\partial \phi}{\partial y}$ at point (1, 1). Calculate the	
percentage difference when compared with the exact values from part	
(a).	