Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: VHDL		
Semester: VIII		
Time: 03 hrs.		

Code: ELEG-434 Program: B. Tech/EE Max. Marks: 100

	SECTION A		
S. No.		Marks	CO
Q 1	Write concurrent code for 8 to 1 Mux using WHEN-ELSE statement	5	CO3
Q2	Explain the Behavioral domain, Structural domain and Physical domain of system to silicon level VLSI Design.	5	CO2
Q3	List out the salient features MAX 7000 series CPLD with neat sketch. And also explain about the structure of CLB's and Slices in the FPGA architecture.	5	C01
Q4	Derive the circuit for the piece of Verilog code given below and write the code at dataflow level. module electronics(x,clock,Q1,Q2) input x, clock; output reg Q1, Q2; always@(posedge clock) begin Q1=x; Q2=Q1; end end module	5	CO4
	SECTION B		
Q5	Mention all the types of pre-defined data types, operators and data & signal attributes in VHDL. And also Mention the output for the following. i. W <= (0 =>'1', OTHERS => '0'); ii. d'Reverse_range of Signal d:std_logic_vector(7 downto 0) ; iii. If x<="1001010" then Y<= x sra 4	10	C01
Q6	Write the VHDL code for the following RTL diagram of the SISO shift register. Consider the data"1010" given to SISO shift register, with neat sketch the output graph after simulation and also explain the step by step procedure of data transfer w.r.t clock pulse.	10	CO3

	SISO		
	reg(3:0) s_out		
	clk		
	en		
	s_in		
	SISO		
Q7	Write 4 bit Parallel adder structural VHDL code using fulladder as component	10	CO3
Q8	Analyze the following design terms in the VLSI design cycle		
	a) Architectural Design		
	b) Functional Design	10	CO1
	c) Logic Design	10	CO1
	d) Circuit Design		
	e) Physical Design		
	SECTION-C		
Q9	 a) Design the synchronous sequential circuit for the following state graph. Choose flip-flop of your choice b) Write the VHDL code for the design using dataflow model c) Write the Verilog code for the design using structural model 		
	c) write the verificities code for the design using structural model 0 1 1 1 1 1 1 1 1 1 1	20	CO4
Q10	Analyze the following multiplexer VHDL code carefully and write the simulation test bench for the same with neat graph. And make the necessary changes to the code to make it synthesizable on FPGA. architecture Behavioral of mux is begin process(a, sel) is begin if(sel(0)<='0' and sel(1)<='0') then y<=a(0); elsif(sel(0)<='1' and sel(1)<='0') then y<=a(1); elsif(sel(0)<='1' and sel(1)<='1') then y<=a(2); elsif(sel(0)<='1' and sel(1)<='1') then y<=a(3); end if; end process;	20	CO2

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: VHDL Semester: VIII Time: 03 hrs.

SECTION A			
S. No.		Marks	СО
Q 1	List out atleast ten different keywords in VHDL and Verilog HDL's. And also differentiate between ASIC and FPGA design.	5	CO3
Q2	Explain the Gajski's Y-chart system to silicon level VLSI Design with neat sketch.	5	CO1
Q3	Construct the basic layout of SPLD architecture with neat sketch.	5	CO2
Q4	Write the Verilog code and the stimulus for the following Boolean function x = A + BC + B'D y = B'C + BC'D' SECTION B	5	CO4
Q5	Mention all the types of pre-defined data types, operators and data & signal attributes in VHDL. And also Mention the output for the following. i. W <= (0 =>'1', OTHERS => '0'); ii. d'Reverse_range of Signal d:std_logic_vector(7 downto 0); iii. If x<="1001010" then Y<= x sra 4	10	CO1
Q6	Observe the following graph carefully, derive the specifications of the system, create the logic, generate the complete VHDL code and the test bench required to get the following system output along with the RTL diagram.	10	CO3
Q7	Develop 4-bit, 2's complement adder/subtractor using Full adder as component. The control line M='1' performs subtraction and M='0' performs addition.	10	CO3
Q8	Analyze the following design terms in the VLSI design cycle a) Architectural Design b) Functional Design c) Logic Design d) Circuit Design e) Physical Design SECTION C	10	CO1
Q8	a) Design the synchronous sequential circuit for the following state graph. Choose flip-flop of your choiceb) Write the VHDL code for the design using dataflow model	20	CO4

	c) Write the Verilog code for the design using structural model		
Q10	Analyze the following Decoder VHDL code carefully, insert ICON, ILA and VIO IP cores into the code to implement the same on FPGA hardware. entity decoder is port(a : in STD_LOGIC_VECTOR(1 downto 0); b : out STD_LOGIC_VECTOR(3 downto 0)); end decoder; architecture bhv of decoder is begin process(a) begin case a is when "00" => b <= "0001"; when "01" => b <= "0010"; when "10" => b <= "0100"; when "11" => b <= "1000"; end case; end process; end bhv;	20	CO2
