Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Programme: B Tech Civil Engineering Course Name: Urban Transport Planning

No. of page/s: 3

Course Code: CEEG 432

Semester – VIII Max. Marks : 100 Duration : 3 Hrs

Set A

Instructions: 1. Assume the missing data suitably and clearly explain your assumptions 2. All the questions are compulsory.

SECTION A (5x4=20 marks)

S. No.		Marks	CO
Q1	Explain the following terms.		
	i. Trip Purpose		
	ii. Modal split	5	CO ₁
	iii. Zoning		
	iv. Inventory		
Q2	Draw the flow diagram for modal split carried out between Trip Generation and Trip	_	CO1
	Distribution.	3	CO2
Q3	Discuss on traffic assignment application with respect to a metropolitan city.	5	CO3
Q4.	Discuss the recent advancements in MRTS.	5	CO4
	SECTION R (10v4=40 marks)		

SECTION B (10x4=40 marks)

Q5.	It has been found that there are 2500 households of 5 members in each in an urban area. Find the probability that a particular household of this size has 0, 1, 2, 3, 4 and 5 employed residents.	10	CO3
Q6.	What are the challenges associated with the MRTS? Discuss with the help of an example(s).	10	CO4
Q7.	The speed and concentration of vehicles in a traffic stream were observed as given below. Find the regression equation for determining speed from concentration.	10	CO1

	Concentra tion(Veh./ Km	15	25	35	45	55	6:	5	75	85	95	100		
	Speed (Kmph)	70	65	74	54	25	9:	5 (56	99	32	34		
Q8.	What is spur	ious c	correla	ation?	Explair	ı its si	gnifica	ance w	ith the	e help o	of an ex	ample.	10	CO1
					SECT	TON-	C (20	x2=40	mark	ks)				
Q9	Using Fratar	grow	th fac	tor me	ethod;	calcula	ate and	l tabula	ate int	er-zona	al trips:			
		Zo	ne		1	2	3	4		rowth				
		1				75	175	80		1.5			20	CO2
		2			80		325	160		2.75			20	
		3			170	380		280		4.3				
		4			220	180	390			2.5				
						0	R							
Q9.	The trip inte matrix below –	ercha	nges	amor	ng three	e zon	es of	a stud	y area	a are s	hown	in the	20	CO2
		Zo	ne		1	2	3	4		rowth actor				
		1				50	25	25		1.5				
		2			50		100	100		2.75				
		3			25	100				4.3				
		4			25	75	150	150		2.5				
	The growth period are a													

	Zone G.F.	3	2 4	3		
Q10.A	Explain the facto planning.	rs considered durin	g the econor	nic evaluation in transport	10	CO4
B.	Explain the vario	us methods in mod	al split.		10	CO3

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Programme: B Tech Civil Engineering Course Name: Urban Transport Planning

Course Code: CEEG 432

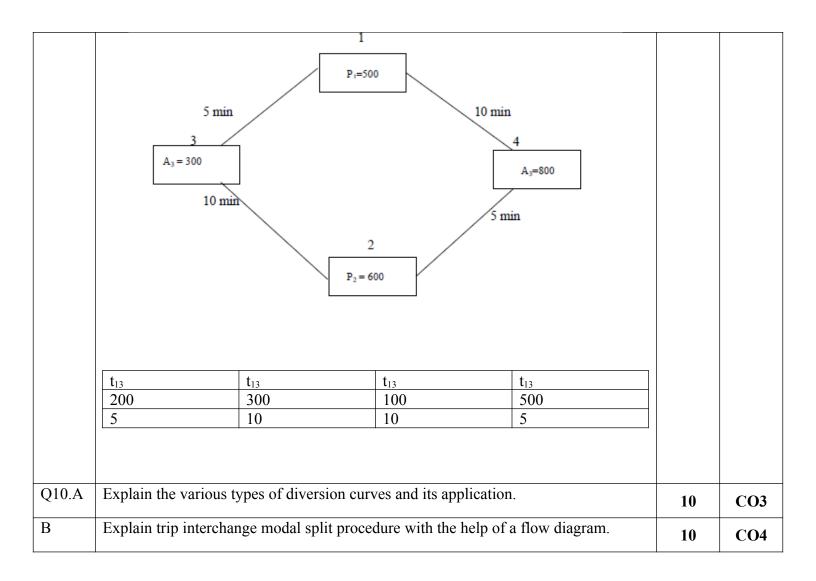
No. of page/s: 3

Semester – VIII Max. Marks : 100 Duration : 3 Hrs

Set B

Instructions: 1. Assume the missing data suitably and clearly explain your assumptions

2. All the questions are compulsory.


SECTION A (5x4=20 marks)

S. No.		Marks	CO
Q1	Explain the following terms.		
	i. Problem definition		
	ii. Goals & Objectives	5	CO1
	iii. Constraints		
	iv. Inventory		
Q2	Explain the various techniques of traffic assignment.	5	CO2
Q3	What are the various factors affecting model split?	5	CO3
Q4.	Compare MRTS with the conventional public transport.	5	CO4
		•	

SECTION B (10x4=40 marks)

Q5.	In analyzing the employment structure of households in an urban area, it has been found that there are 1500 households of 4 members in each. Find the probability that a particular household of this size has 0, 1, 2, 3 and 4 employed residents.	10	CO3
Q6.	Explain the development of MRTS in your area. If not already developed, discuss the scope of its development.	10	CO4
Q7.	The speed and concentration of vehicles in a traffic stream were observed as given below. Find the regression equation for determining speed from concentration.	10	CO1

	Concentra tion(Veh./ Km	10	20 30	4() 4	50	60	70	80	90	100		
	Speed (Kmph)	70	65 74	34	1 (65	75	56	65	32	34		
Q8.	Explain the	numbe	er plate si	ırvey v	vith the	e help o	of a sa	mple sur	vey fo	orm.		10	CO1
Q9.	Using average	ge gro	wth facto					40 mar		nal trips:			
	O/D		1	2	3	4	PR	OTAL ESENT TRIP	F	EDICTEI UTURE TRIPS)		
	1		00	87	125	50		262		300		20	CO2
	3		125	45	450	300		725 875		800		20	
	4		50	18	300			538		300			
						OR							
Q9.	Calibrate the Gravity Model for 4-network problem:											20	CO2

