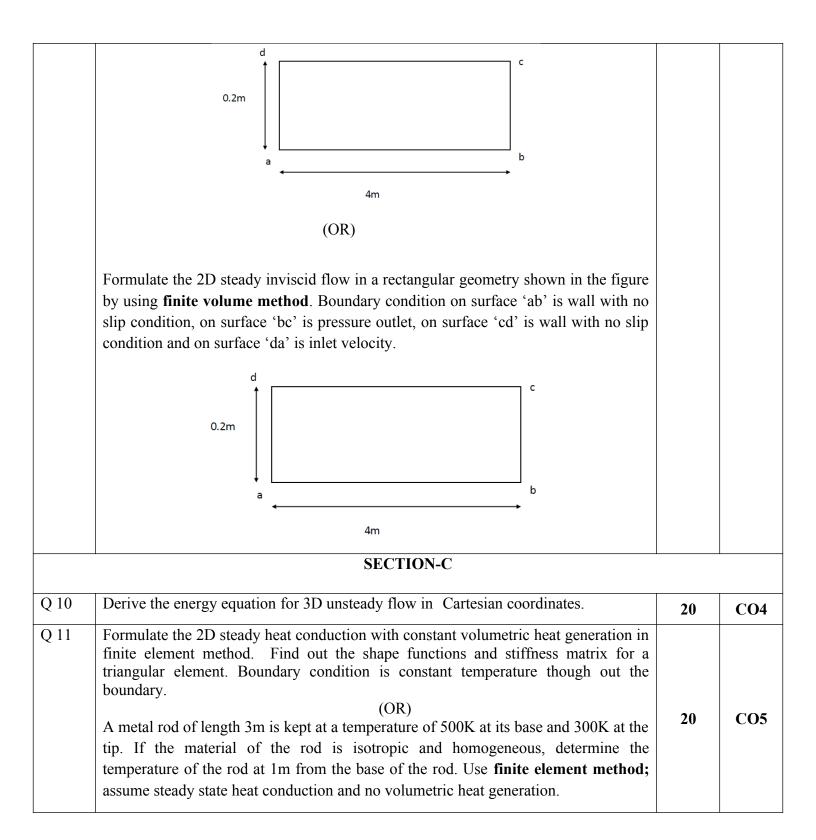
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018


Course: Computational Fluid Dynamics (GNEG403) Program: B.Tech- Mechatronics, ADE Time: 03 hrs.

Semester: VIII

Max. Marks: 100

S. No.		Marks	CO
Q 1	How computational fluid dynamics is different from analytical and experimental methods? Write its advantages and limitations.	4	CO1
Q 2	Explain the following a) Truncation error b) Round off error	4	CO2
Q 3	Distinguish between : a) Steady flow and un-steady flow b) Compressible and incompressible flow	4	CO3
Q 4	Discretize the following equation using forward and central difference schemes. $\left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right] = 0$	4	C05
Q 5	Explain the stability of numerical scheme with a suitable example.	4	C05
	SECTION B		
Q 6	Differentiate between finite difference methods, finite volume method and finite element method.	10	CO1
Q 7	Discretize the continuity equation for 3D unsteady compressible flow using BTCS and FTCS scheme.	10	CO2
Q 8	Find out the shape functions for 6 node 2D element.	10	CO3
Q 9	Formulate the 2D steady heat conduction in a rectangular geometry shown in the figure by using finite volume method . Boundary condition on surface 'ab' is constant temperature (T=A), on surface 'bc' is constant heat flux (q=B), on surface 'cd' is constant temperature (T=C) and on surface 'da' is constant heat flux (q=D).	10	CO4

SECTION A

