UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April 2018

Course: Aero-Elasticity
Program: B.Tech ASE
Time: 03 hrs.

Semester: VIII

Max. Marks: 100

Instructions: Make use of sketches/plots to elaborate your answer. Brief and to the point answers are expected. The Question paper has three sections: Section A, B and C.

SECTION A (5x 4 = 20 Marks)			
S. No.		Marks	CO
Q 1	Differentiate between: Static and Dynamics Aero-Elasticity, Flexural and Elastic axis.	5	CO1
Q 2	Classify the different types of Aero-Elastic problem in general.	5	CO1
Q 3	Explain how the sweep back wing is reducing the possibility of wing divergence, whereas the swept forward wing having very low divergence speed.	5	CO2
Q 4	What do you mean by aileron reversal speed? Explain in details.	5	CO2
SECTION B (10 x $4=40$ Marks)			
Q 5	Flutter is the dynamic instability of an elastic body in an airstream. Support the statement with explanation. Also explain the different types of flutters.	10	CO3
Q 6	What do you mean by aileron buzz? Explain the methods to prevent aileron buzz.	10	CO3
Q 7	What do you mean by coupling? Define the Inertial, elastic and Aerodynamic coupling.	10	CO4
Q 8	Consider a 2-D wing as shown in figure below. Derive and obtain the expression of reversal speed. Also mention the importance of divergence speed in aircraft design.	10	CO5
SECTION-C (20 x $2=40$ marks)			
Q 9	An initially untwisted rectangular wing of semi-span 's' and chord ' c ' has its flexural	20	CO5

	axis normal to the plane of symmetry, and is of constant cross-section with torsional rigidity 'GJ'. The aerodynamic center is 'ec' ahead of the flexural axis, the lift coefficient slope is ' a ' and the pitching moment coefficient at zero lift is $\mathrm{C}_{\mathrm{m}, 0}$. At speed ' V ' in air of density ' ρ ' the wing-root incidence from zero lift is α_{0}. Using simple strip theory, i.e. ignoring downwash effects, show that the incidence at a section distant y from the plane of symmetry is given by, $\alpha_{0}+\theta=\left(\frac{C_{\mathrm{m}, 0}}{e a}+\alpha_{0}\right) \frac{\cos \lambda(s-y)}{\cos \lambda s}-\frac{C_{\mathrm{m}, 0}}{e a}$ where $\lambda^{2}=\frac{e a \frac{1}{2} \rho V^{2} c^{2}}{G J}$ Assuming $\mathrm{C}_{\mathrm{m}, 0}$ to be negative, find the condition giving the speed at which the lift would be reduced to zero.		
Q 10	Write short notes on the following: ($5 \times 4=20$ Marks) 1. Prevention of Flutter. 2. Control surface flutter. 3. Buffeting. 4. Static and dynamic Aero-elasticity.	20	CO4

