25 Marks

CO4

8

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April 2018

Program: B Tech Electrical Engg Semester – VIII **Subject (Course): Advanced Protective Relaying** Max. Marks : 100 Course Code : ELEG 453 Duration : 3 Hrs No. of page/s:01

	SECTION-A									30 Marks		
	(Attempt all questions)											
1	Explain Load shedding and its requirement in power system network									[8]	CO ₂	
2	The time-current (PSM) characteristic of an over current relay for TMS									or TMS	[8]	CO3
	of 1 is given as follows:											
	PSM	2	3	5	7	10	13	15	18	20		
	Operating	10	6.8	4.4	3.4	2.8	2.5	2.4	2.3	2.2		
	time in											
	sec											
	If the curren	t plug	setting	g is ad	justed	to 50%	and t	he tim	e multi	iplier is		
	adjusted to (0.75, c	calcula	te the	time o	f opera	ation o	f the re	elay w	hen the		
	fault current	is 300	00 A a	nd the	relay i	is conn	ected	to a C	Γ ratio	400/5.		
3	A 3-phase	11kV/	33kV,	Star-	Delta	connec	eted po	ower t	ransfo	rmer is	[7]	CO ₃
	protected by	z diffe	rential	nrote	ction	The C	Ts on	the LV	V side	have a		

3	A 3-phase 11kV/33kV, Star-Delta connected power transformer is	[7]	CO3
	protected by differential protection. The CTs on the LV side have a		
	current ratio of 400/5. What must be the ratio of CTs on the HV side.		

Explain the purpose of coupling capacitor and line tuner in carrier [7] CO₂ current protection scheme.

	SECTION-B	45 Marks	
	(Attempt all questions)		
5	Explain the methodology required to avoid the mal operation of under	[15]	CO ₃
	frequency relay .with induction motor load.		
6	Describe the biased differential protection required for a power transformer when considering the magnetizing inrush currents.	[15]	CO3
7	Explain the paralleled transformer protection using primary fuses with neat schematic diagram.	[15]	CO3

a) Explain the Instantaneous overcurrent static relay with detailed working of every component.

SECTION-C

b) Discuss the modified Instantaneous over current relay with block diagram and detailed explanation & circuit.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April 2018

Program: B Tech Electrical Engg
Subject (Course): Advanced Protective Relaying
Course Code: ELEG 453
Semester - VIII
Max. Marks: 100
: 3 Hrs

No. of page/s:01

		30 Marks							
1	The current CT ratio=40 the relay. At	[8]	CO3						
	PSM Operating time in sec	10	5	4	3	2.8	20 2.4		
2	-	Explain the purpose of drain coil and line trap in carrier current protection scheme.							CO2
3	Discuss KF Induction-cylinder under frequency relay working and operation							[8]	CO3
4	Discribe the	[7] 45 Marks	CO2						
5	Explain with breaker by u	[15]	CO3						
6	Explain the sketch.	[15]	CO3						
7	Describe the working operation of synchronism check relay with neat schematic diagram.							[15]	CO3
	SECTION-C								CO4

ne over current static relay with detailed

- **8** a) Explain the Definite time over current static relay with detailed working of every component.
 - b) Discuss the modifications and requirements to convert the definite time relay to Inverse time current relay with neat sketch and description.