Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Apri//May 2018			
Course: Program Time: Instruct	Spacecraft Dynamics and Attitude Control Semester: B.Tech ASE Maximum Marks: $\mathbf{0 3 ~ h r s ~}$	$\begin{aligned} & \text { VIII } \\ & 100 \end{aligned}$	
SECTION A			
S. No.		Marks	CO
Q1	Define Following: 1. Precession 2. MEO 3. Epoch 4. Roche limit	4	CO1
Q2	Draw a well labelled diagram, illustrating six orbital parameters.	4	CO1
Q3	State and explain Kepler's three laws of planetary motion.	4	CO3
Q4	Differentiate between following: 1. Sidereal day and sinodic period 2. Eccentricity vector and apse line	4	CO1
Q5	Calculate orbital velocity and escape velocity of a circular LEO at 160 km .	4	CO2
SECTION B			
Q6	Derive the expression for sphere of influence for a planet	10	CO3
Q7	Illustrate and explain following orbital maneuvers: 1. Hohmann transfer 2. Phasing maneuver 3. Apse line rotation 4. Plane change maneuver 5. One tangent burn OR Show that, for a given Δv, the change in specific energy is larger the faster the spacecraft is moving.	10	CO4
Q8	Derive the 'five term acceleration formula' for absolute acceleration of a particle in arbitrary motion. Identify the 'coriolis acceleration' in the final expression.	10	CO2

Q9	A spacecraft is in a 500 km altitude circular earth orbit. Neglecting the atmosphere, find the delta-v required at A in order to impact the earth at (a) point B (b) point C.	10	$\mathrm{CO5}$
SECTION-C			
Q10	An earth satellite is in an orbit with perigee altitude $z_{p}=400 \mathrm{~km}$ and an eccentricity $e=0.6$. Find (a) the perigee velocity, v_{p} (b) the apogee radius, r_{a} (c) the semimajor axis, a (d) the true-anomaly-averaged radius r_{θ} (e) the apogee velocity (f) the period of the orbit (g) the true anomaly when $r=r_{\theta}$ (h) the satellite speed when $r=r_{\theta}$ (i) the flight path angle γ when $r=r_{\theta}$ (j) the maximum flight path angle $\gamma_{\max }$ and the true anomaly at which it occurs.	20	$\mathrm{CO4}$
Q11	At point A on its earth orbit, the radius, speed and flight path angle of a satellite are $r_{A}=12,756 \mathrm{~km}, v_{A}=6.5992 \mathrm{~km} / \mathrm{s}$ and $\gamma_{\mathrm{A}}=20^{\circ}$. At point B, at which the true anomaly is 150°, an impulsive maneuver causes $\Delta \nu_{\perp}=+0.75820 \mathrm{~km} / \mathrm{s}$ and $\Delta v_{r}=0$. a) What is the time of flight from A to B ? b) What is the rotation of the apse line as a result of this maneuver? OR a) With a single delta-v maneuver, the earth orbit of a satellite is to be changed from a circle of radius $15,000 \mathrm{~km}$ to a coplanar ellipse with perigee altitude of 500 km and apogee radius of $22,000 \mathrm{~km}$. Calculate the magnitude of the required delta- v and the change in the flight path angle $\Delta \gamma$. b) What is the minimum total delta-v if the orbit change is accomplished instead by a Hohmann transfer?	20	$\mathrm{CO5}$

