Roll No: -----

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April 2018

Program: B.Tech - MSNT Subject (Course): Nano Electronics and Robotics Course Code : MTEG - 422 No. of page/s : 02 Semester – VIII Max. Marks : 100 Duration : 3 Hrs

(CO2)

(CO5)

(CO2)

Note:

All questions are compulsory. Section A: 5 X 4= 20 Marks Section B: 10 X 4 = 40 Marks Section C: 20 X 2 = 40 Marks

Section A

- 1. Classify robots according to Japanese Industrial Robot Association (JIRA). (CO1)
- 2. Explain briefly about the characteristics of actuators.
- A hydraulic rotor actuator is used for a twist joint with hydraulic power source of pressure (CO2) 50 bars and flow rate 8 cm³/min. The outer and inner radii of vane are 80 mm and 20 mm respectively and the width is 10 mm. Determine the angular velocity and torque generated by the actuator.
- 4. Explain briefly about two types of proximity sensors.

Section **B**

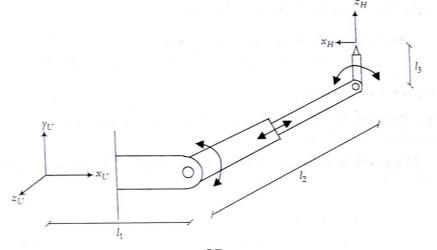
- 5. Explain the different components of a robot. Explain the common robotic joints. (CO1) (8+2)
- 6. Frame {2} is rotated with respect to frame {1} about x-axis by an angle of 60° and then (CO3) by an angle of 45° about z-axis. The position of origin of frame {2} as seen from frame {1} is [7 5 7]^T. Obtain the homogeneous transformation matrix which describes the frame {2} relative to frame {1}. If the location of a point P with respect to frame {2} is [3 -2 5]^T, find the location of P with respect to frame {1}.

<u>OR</u>

Determine the new location of point G, initially at $G = [3 \ 0 \ -1 \ 1]^T$, if:

- i. It is rotated by π about z-axis and then translated by 3 units along y-axis, and
- ii. It is first translated by 3 units along y-axis and then rotated by π about z-axis
- Examine whether the two locations are same or not
- 7. Explain in detail about the different types of electrical actuators used in Robots.
- 8. The homogeneous transformation matrices between frames $\{1\} \{2\}$ and $\{2\} \{3\}$ (CO3) are:

	0.527	-0.574	0.628	2]		[0.92	0	0.39	5]	
¹ T. –	0.369	0.819	0.439	5	and ${}^{2}T_{3} =$	0	1	0	6	
$1_2 -$	-0.766	0	0.643	3	and $1_3 -$	-0.39	0	0.92	2	
2	L 0	0	0	1		LO	0	0	1	
mina 37	-									


Determine ³T₁

Section C

- 9. A piezo-electric transducer has a capacitance of 1000 pF and a charge sensitivity of 40 X (CO5 10^{-3} C/m. The connecting cable has a capacitance of 300pF while the oscilloscope used for readout has a readout input resistance of 1M Ω with a parallel capacitance of 50pF. (CO6)
 - i. Determine the sensitivity (V/m) of the transducer alone.
 - ii. Compute the high frequency sensitivity (V/m) of the entire measuring system.
 - iii. Compute the lowest frequency that can be measured with 5 percent amplitude error by the entire system.

(CO3)

- 10. A special 3-DOF spraying robot has been designed as shown:
 - i. Assign the coordinate frames based on the D-H representation.
 - ii. Prepare the parameter table.
 - iii. Compute individual transformation matrix for each pair of frames.
 - iv. Compute the final transformation matrix for the end effector.

OR

In a 5-DOF food, the Dif parameters are as given below.										
		θ	d	а	α					
	0-1	θ_{1}	0	0	90°					
	1-2	θ_2	0	0	-90°					
	2-Н	0	d_3	0	0					
The transformation matrix is given as:										
		[0.35	4 0.866	0.354	0.106]					
	Т	$= \begin{bmatrix} -0.62 \\ 0.70 \end{bmatrix}$	12 0.500	-0.612	-0.184					
	1	- 0.70	7 0	0.707	0.212					

In a 3-DOF robot, the DH parameters are as given below:

Determine the joint variables if $-100^{\circ} < \theta_1 < 100^{\circ}$, $-30^{\circ} < \theta_2 < 70^{\circ}$ and $0.05 m < d_3 < 0.5 m$