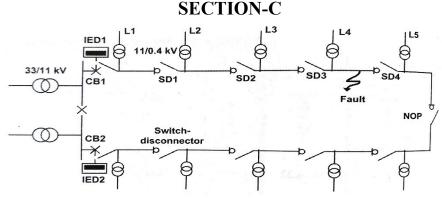


UNIVERSITY OF PETROLEUM AND ENERGY STUDIES


Subj Cour	ect (Course): Power System Automation & Smart Grid	Semester – Max. Marks Duration	VIII : 100 : 3 Hrs	
	SECTION-A	30 Mar	30 Marks	
	(Attempt all questions)			
1	Design a Ladder logic for switching ON /OFF the lamp using two switches. The design should be simple and can be controlled by eac		CO2	
2	 switch. a) Explain the Open wire communication technique with neat sketch b) If a PLC (Power Line Communication), equipment uses a carrier frequency 500 kHz. If the value of inductance in the line trap in 0.35 mH, calculate the value of capacitance required. 	er	CO3	
3	A specification sheet of a smart meter states that its rated current if 75 A and power dissipation is 4.5 W. it employs a current sensin resistor of 275 micro ohms. When the load current is at the rate value of the meter, calculate	g	CO3	
	a) Power dissipation in all other components of the meterb) Voltage across the current sensing resistor at full load current			
4	Explain the Basic Block Diagram of PLC and Explain the Ladde Diagram of OR Function.	er [7]	CO2	
	SECTION-B	45 Mar	ks	
	(Attempt all questions)			
5	Explain Direct on line (DOL) starting of induction motor. Drav ladder diagram for DOL starter using PLC.	w [15]	CO3	
6	a) Describe Optical Fiber communication for the Power system automation.	n [15]	CO4	
	b) A step index multimode fiber has a core of refractive index 1. and cladding of refractive index 1.535. Calculate the maximum allowable angle of acceptance for refraction on core-claddin surface.	n		

8

A 5 MW induction generator of a hydro scheme is connected to the distribution system as shown in above fig. when the induction generator generates 5 MW, it absorbs 2.5 Mvar of reactive power. When the reactive power generation of the D-STATCOM is Q_c , it was found that the voltage at the point of connection is $1.00132.9^{\circ}_{\text{C}}$ pu and the terminal of the generator is 10°_{C} pu. Calculate the value of Q_c . The per unit values are given on 10 MVA basis.

25 Marks CO4

The figure represents a typical 11 kV distribution network section. IED1 & IED2 consists an over current protection element. The fault occurred in between SD3 and SD4. Restore the supply in less span time is the main objective. Considering the data given,

a) Propose a simple method to reduce the restoration time of loads L1, L2, L3 and L4.

b) Propose a fully automated distribution network

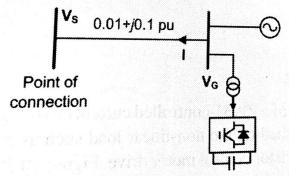
c) Propose an automatic restoration method in steps.

j0.605 Ω

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

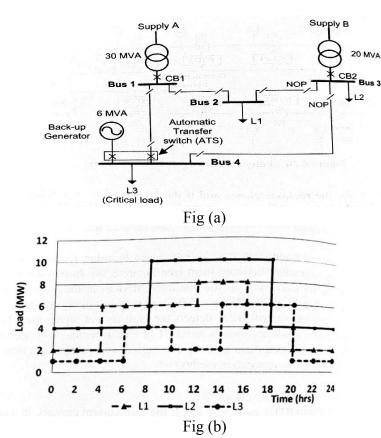
End Semester Examination, April 2018

Subj Cou	ject (Course): Power System Automation & Smart Grid	Semester – Max. Marks Duration	VIII : 100 : 3 Hrs	
	SECTION-A	30 Mar	30 Marks	
1	(Attempt all questions) Explain the Optical Ground Wires (OPGW) with advantages and limitations by comparing with other communication networks.	d [8]	CO2	
2	Explain the Basic Block Diagram of PLC and Explain the Ladde Diagram of AND Function.	er [7]	CO2	
3	Explain the following	[8]	CO2	
	a) Master bridge with neat sketchb) Slave bridge with neat sketch			
4	A smart meter states that its rated current is 100 A and power dissipation is 3 W. it employs a current sensing resistor of 300 micro ohms. When the load current is at the rated value of the meter calculate the gain of the PGA to match with an ADC having a full scale of 7.5V.	0 r,	CO3	
	SECTION-B	45 Mar	ks	
5	(Attempt all questions) Explain Star Delta starting of induction motor. Draw ladder diagram for Star- Delta starting using PLC.	n [15]	CO3	
6	$G_1 \bigcirc \begin{array}{c} 25 \text{ MVA} \\ 15\% \end{array}$ $G_2 \bigcirc \begin{array}{c} 25 \text{ MVA} \\ 15\% \end{array}$ $G_2 \bigcirc \begin{array}{c} 15\% \end{array}$	[15]	CO4	
	$T_{1} \bigoplus \begin{array}{c} 33/11 \text{ kV} \\ 25 \text{ MVA} \\ 10\% \end{array}$ $T_{2} \bigoplus \begin{array}{c} 33/11 \text{ kV} \\ 25 \text{ MVA} \\ 10\% \end{array}$			
	$- A j_{1,21\Omega} B $			


For the power system shown in above fig, draw the network diagram giving all reactances on 100 MVA base. Calculate the fault current in pu and in amperes for a three phase short circuit fault at C. all pre

j0.605 Ω

- c


J Fault

fault voltages are 1.0 p.u. ignore any effect of system loads.

Derive the expression for the voltage at the point of connection V_s in terms of active power generated P, net reactive power absorbed Q and generator terminal voltage V_c .

SECTION-C

A section of distribution network is shown in the above fig (a). Daily load profiles of each load are given fig (b). all loads are assumed to be unity power factor:

- a) Discuss the consequence of loss of Supply A when the automation is absent
- b) Discuss a possible automatic restoration scheme which employs an Agent and re-closers with remote terminal units that provide minimum interruption to all the loads

25 Marks CO4

[15]

CO3

7

8