Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

**Course: Energy Conservation and Audit (PSEG-441)** 

**Semester: VIII** 

**Program: B Tech Power System Engineering** 

Time: 03 hrs. Max. Marks: 100

Instructions: In Question number 0 of Section R has internal choice attempt any one question

| Instr | uctions: In Question number 9 of Section B has internal choice attempt any one question<br>In Question number 11 of Section C has internal choice attempt any one question                                                                                                                                                                                                                                                                                                                                      |          |             |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|--|
|       | SECTION A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u> | (5*4)       |  |
| Q1    | Differentiate between primary and secondary sources of energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4        | CO1         |  |
| Q2    | Define Energy Policy with reference to the industries and discuss its advantages.                                                                                                                                                                                                                                                                                                                                                                                                                               | 4        | CO2         |  |
| Q3    | Q3 List down any four energy conservation options available in boilers.                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |             |  |
| Q4    | Explain the methodology for the performance analysis of three-phase induction motor.                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             |  |
| Q5    | Explain the concept of fuel substitution by giving one example.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             |  |
|       | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | ( )         |  |
|       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I        | (4*10)      |  |
| Q6    | A 4-pole 415 V 3-phase, 50 Hz induction motor runs at 1440 RPM at 0.88 pf lagging and delivers 10.817 kW. The stator loss is 1060 W, and friction & windage losses are 375 Watts. Calculate (A) Slip (B) Rotor Copper loss (C) Line current (D) Efficiency                                                                                                                                                                                                                                                      | 10       | CO3         |  |
| Q7    | A generating station has the following data:  Installed capacity = 300MW  Annual Load Factor = 60%  Capital Cost = Rs 10 <sup>9</sup> Calculate (i) The minimum reserve capacity of the station  (ii) The cost per kWh generated  Capacity Factor = 50%  Annual Cost of fuel = Rs 9*10 <sup>7</sup> Annual Interest and Depreciation = 10%  Calculate (i) The minimum reserve capacity of the station                                                                                                           | 10       | CO1         |  |
| Q8    | List down five important points of energy audit report format and explain the methodology for performance analysis of heat exchangers.                                                                                                                                                                                                                                                                                                                                                                          | 10       | CO5,<br>CO6 |  |
| Q9    | A) In a process plant a coal-fired boiler of 78% efficiency is propose to replace with paddy husk fired boiler of 68% efficiency. Calculate the cost savings for changing over to paddy husk.  Calorific value of coal = 4800 kcalAl / kg  Cost of coal = Rs. 2500 / MT  GCV of paddy husk (Kcal/kg) = 3568  Cost of Paddy Husk = Rs. 1100 / MT  Quantity of steam requirement = 15 TPH  Enthalpy of steam = 770 kCal / kg  Enthalpy of feed water = 120 kCal / kg  Annual operating hours of boiler = 8000 hrs | 10       | CO5         |  |

|           | OR                                                                                                  |              |                                |                   |              |             |       |          |         |        |              |    |        |
|-----------|-----------------------------------------------------------------------------------------------------|--------------|--------------------------------|-------------------|--------------|-------------|-------|----------|---------|--------|--------------|----|--------|
| <b>Q9</b> | <b>B</b> ) In a building there are total 80 rooms of size 20*20 ft. Building has the following load |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           | which operates for 6200 hours in a year,                                                            |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           |                                                                                                     | Sr. No       | No Load Wattage (Watts) Number |                   |              |             |       |          |         |        |              |    |        |
|           |                                                                                                     | 1            | CFL I                          | Bulb              | Sulb 36 1000 |             |       |          |         |        |              |    |        |
|           |                                                                                                     | 2            | CFL 7                          | Tubelight 40 2000 |              |             |       |          |         |        |              |    |        |
|           | After the energy audit, it was found that each room has extra luminaire that can removed            |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           | so that the average lux level in the room can be maintained.                                        |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           |                                                                                                     |              |                                |                   |              |             | at w  | ere extr | a total | in nu  | mber. It was | 10 | CO4    |
|           |                                                                                                     |              | make tl                        | he following      | g repla      |             |       |          | Ια .    |        |              |    |        |
|           | Sr.                                                                                                 | Load         |                                | New               | 4            | Wattage     |       | New      | Cost    | _      |              |    |        |
|           | No                                                                                                  | CEL D11.     |                                | Replacem          |              | Replacen 9  | ient  | (W)      | unit (  | KS)    |              |    |        |
|           | 1                                                                                                   | CFL Tube     |                                | LED Bulb          |              | _           |       |          | 130     |        |              |    |        |
|           | 2 CFL Tubelight LED Tubelight 28 170                                                                |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           | Calculate the payback time of the energy conservation measure recommended by an energy              |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           | auditor. Assume energy charges Rs 4/kWh  SECTION-C                                                  |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           |                                                                                                     |              |                                |                   |              | BECTION     | i-C   |          |         |        |              |    | (2*20) |
| Q10       | a)                                                                                                  | Explain i    | n detail                       | the role of l     | BEE (        | Bureau of   | Ener  | gy Effic | ciency) | and    | explain two  | 10 | CO1    |
|           |                                                                                                     | energy co    | nservat                        | tion projects     | imple        | emented by  | BEI   | E in Ind | ia      |        | _            |    |        |
|           | b)                                                                                                  | Discuss in   | n detail                       | how energy        | / mana       | agement sys | stem  | can imp  | plemen  | ted in | UPES by      | 10 | CO2    |
|           |                                                                                                     | giving su    |                                |                   |              |             |       |          |         |        |              |    |        |
| Q11       |                                                                                                     |              |                                |                   |              |             |       | 10       | CO6     |        |              |    |        |
| (i)       | obtained while conducting walk through and detail energy audits.                                    |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           | <b>b</b> ) Discuss in detail about flash steam recovery from steam condensate and list down         |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           | the formats required to gather the data for evaluating the performance of flash steam               |              |                                |                   |              |             |       |          | 10      | CO5    |              |    |        |
|           | recovery system.                                                                                    |              |                                |                   |              |             |       |          |         |        |              |    |        |
|           |                                                                                                     |              |                                |                   |              | OR          |       |          |         |        |              |    |        |
| Q11       | D                                                                                                   | iscuss in de | tail the                       | following:        |              |             |       |          |         |        |              |    |        |
| (ii)      |                                                                                                     |              |                                | s for motor l     | •            | _           |       |          |         |        |              |    | CO3    |
|           | b) Five options for electricity distribution loss optimization                                      |              |                                |                   |              |             |       |          | 20      | CO4    |              |    |        |
|           | <b>c</b> )                                                                                          |              |                                | ity assessme      | ent of       | air compres | ssors | S.       |         |        |              |    | CO5    |
|           | d) ISO-50001 PDCA cycle.                                                                            |              |                                |                   |              |             |       |          |         |        | CO2          |    |        |

Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, April/May 2018

Course: Energy Conservation and Audit (PSEG-441)

Semester: VIII

**Program: B Tech PSE** 

Time: 03 hrs. Max. Marks: 100

|            |                                                                                                                    | SECTION A                  |                                                    |    |       |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------|----|-------|--|--|
|            |                                                                                                                    |                            |                                                    |    | (5*4  |  |  |
| <b>)</b> 1 | examples.                                                                                                          |                            |                                                    |    |       |  |  |
| <b>)</b> 2 | 2 Discuss with appropriate examples the concept of energy management in line with ISO.                             |                            |                                                    |    |       |  |  |
| 23         | Discuss industrial electricity tariff structure, also list benefits of present tariff structure.                   |                            |                                                    |    |       |  |  |
| <u>)</u> 4 | Explain the methodology for performance analysis of compressor.                                                    |                            |                                                    |    |       |  |  |
| <b>)</b> 5 | "Energy conservation can be done by increasing the system efficiency" justify the statement by giving one example. |                            |                                                    |    |       |  |  |
|            |                                                                                                                    | SECTION B                  |                                                    |    |       |  |  |
| 6          | A particular area can supplied e                                                                                   |                            |                                                    | T  | (4*10 |  |  |
|            |                                                                                                                    | Hydro                      | Steam                                              |    |       |  |  |
|            | Capital Cost/kW Running Cost/kWh                                                                                   | Hydro  Rs. 2100  3.2 paise | Steam  Rs. 1200  5 paise                           | 10 | CO1   |  |  |
|            |                                                                                                                    | Rs. 2100                   | Rs. 1200                                           | 10 | CO1   |  |  |
|            | Running Cost/kWh                                                                                                   | Rs. 2100  3.2 paise        | Rs. 1200 5 paise                                   | 10 | CO1   |  |  |
|            | Running Cost/kWh  Interest and Depreciation  Reserve Capacity  (i) At what load factor                             | Rs. 2100 3.2 paise 7.5%    | Rs. 1200  5 paise  9%  25%  he same in both cases. | 10 | CO1   |  |  |

| Q8         | In a large paper plant, the                                                                                                                                                                               | he following are t                               | he designed  | d and measure   | ed parameters for a clear |    |     |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|-----------------|---------------------------|----|-----|--|
|            | water pump.                                                                                                                                                                                               |                                                  |              |                 |                           |    |     |  |
|            |                                                                                                                                                                                                           | Particulars                                      | Design       | Operating       |                           |    |     |  |
|            |                                                                                                                                                                                                           | Flow m3/hr                                       | 800          | 576             |                           |    |     |  |
|            |                                                                                                                                                                                                           | Head m of WC                                     | 55           | 24              |                           |    |     |  |
|            | _                                                                                                                                                                                                         | Power (kW)                                       | 160          | 124             |                           | 10 | CO3 |  |
|            | _                                                                                                                                                                                                         | Speed RPM                                        | 1485         | 1485            |                           | 10 | COS |  |
|            | The pump delivery has                                                                                                                                                                                     |                                                  |              |                 |                           |    |     |  |
|            | rate. Normal required                                                                                                                                                                                     |                                                  |              |                 |                           |    |     |  |
|            | operating efficiency and                                                                                                                                                                                  |                                                  |              |                 |                           |    |     |  |
|            | required flow rate variation. And what would be the savings if the pump is delivering the                                                                                                                 |                                                  |              |                 |                           |    |     |  |
|            | flow rate of 550 m <sup>3</sup> /h.(0                                                                                                                                                                     | Consider efficienc                               | y of motor   | as 93%).        |                           |    |     |  |
| <b>Q9</b>  | Estimate the boiler effic                                                                                                                                                                                 | ciency by indirect                               | method for   | r the followin  | g data.                   |    |     |  |
| <b>(A)</b> | Type of fuel fired = Pac                                                                                                                                                                                  | ldy husk                                         |              |                 |                           |    |     |  |
|            | Paddy Husk compositi                                                                                                                                                                                      | ion:                                             |              |                 |                           |    |     |  |
|            | Moisture = 10.79%                                                                                                                                                                                         | Mineral Mat                                      | tter = 16.73 | % Carbon        | n = 33.95%                |    |     |  |
|            | Hydrogen = 5.01%                                                                                                                                                                                          | ydrogen = 5.01% Nitrogen = 0.91% Sulphur = 0.09% |              |                 |                           |    |     |  |
|            | Oxygen = 32.52%                                                                                                                                                                                           | GCV(Kcal/k                                       | (g) = 3568   |                 |                           | 10 | CO5 |  |
|            | Cost of Paddy Husk = F                                                                                                                                                                                    | Rs. 1100 / MT                                    |              | Ambien          | $tDBT = 32^{\circ}C$      |    |     |  |
|            | Boiler parameters on Pa                                                                                                                                                                                   | addy Husk                                        |              | Flue gas        | temperature = 190 °C      |    |     |  |
|            | $CO_2$ influegas = 12%                                                                                                                                                                                    |                                                  |              |                 |                           |    |     |  |
|            | The losses other than ex                                                                                                                                                                                  |                                                  |              |                 |                           |    |     |  |
|            |                                                                                                                                                                                                           |                                                  | OR           |                 |                           |    |     |  |
| Q9         | An after cooler of shell                                                                                                                                                                                  | and tube type wi                                 | th single pa | ass is used for | cooling compressed air    |    |     |  |
| <b>(B)</b> | An after cooler of shell and tube type with single pass is used for cooling compressed air from 85 °C to 35 °C. The compressed air generated is 1350 m <sup>3</sup> /h at mean air temperature Calculate: |                                                  |              |                 |                           |    |     |  |
|            | 1) The amount of cooling water to be circulated at a temperature of 30 °C. Assume the cooling water outlet temperature as 35 °C.                                                                          |                                                  |              |                 |                           |    | CO4 |  |
|            |                                                                                                                                                                                                           |                                                  |              |                 | m and 2500 mm length.     |    |     |  |
|            | Assume overall heat tra                                                                                                                                                                                   |                                                  |              |                 | 2                         |    |     |  |
|            | 3) The hp of the pump in Indicate all assumptions                                                                                                                                                         |                                                  | ssure requi  | red is 3.5 kg/d | cm .g.                    |    |     |  |

| SECTION-C                            |                                                                                                                                                 |    |        |     |  |  |            |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|-----|--|--|------------|--|--|--|--|
|                                      |                                                                                                                                                 |    | (2*20) |     |  |  |            |  |  |  |  |
| Q10                                  |                                                                                                                                                 | 10 | CO5    |     |  |  |            |  |  |  |  |
|                                      | (b) Discuss in detail various energy conservation options available in lighting system                                                          |    |        |     |  |  |            |  |  |  |  |
|                                      | and electrical induction motors.                                                                                                                |    |        |     |  |  |            |  |  |  |  |
| Q11 (i)                              | (a) List the measuring instruments used in conducting energy audit of industries and explain the working and application of any two instruments |    |        |     |  |  |            |  |  |  |  |
|                                      | OR                                                                                                                                              |    |        |     |  |  |            |  |  |  |  |
| Q11 Explain in detail the following: |                                                                                                                                                 |    |        |     |  |  |            |  |  |  |  |
| (ii)                                 | (a) Long term strategies for impr                                                                                                               |    |        | CO1 |  |  |            |  |  |  |  |
|                                      | (b) Energy Pricing                                                                                                                              |    |        | CO2 |  |  |            |  |  |  |  |
|                                      | (c) Energy Conservation in Pump                                                                                                                 |    | 20     | CO3 |  |  |            |  |  |  |  |
|                                      | (c) Energy Conservation in Pumps (d) Boilers Performance Analysis                                                                               |    |        |     |  |  |            |  |  |  |  |
|                                      | (e) Types of Energy Audits                                                                                                                      |    |        |     |  |  | CO4<br>CO6 |  |  |  |  |