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Realistic kinetic modeling of fluid catalytic cracking (FCC) units requires detailed composition of the feed stream
in terms of paraffins, naphthenes and aromatics(PNA) which cannot be analyzed in a field laboratory. This paper
presents an artificial neural network (ANN) model to predict detailed composition of FCC feed using routinely
measured properties such as density, ASTM distillation temperatures, Conradson carbon residue (CCR) content,
sulfur and total nitrogen as inputs to the model. Several feedforward-error back propagation networks with dif-
ferent number of neurons in hidden layers were studied using Levenberg–Marquardt (LM) training algorithm.
Among different network architectures investigated, the ANN model with 8 inputs, namely density and ASTM
distillation temperatures except IBP, FBP and only one neuron in the output layer to predict paraffin, naphthene
and aromatic contents individually showed the best agreementwith the experimental results within permissible
limit. These compositionswhen usedwith a 10-lump kineticmodel of FCC unit, successfully simulated plant per-
formance for several different feeds.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Modeling of FCC unit becomes complex due to the presence of a
large number of hydrocarbons in the feed which undergo a variety of
reactions to yield valuable cracking products. Laboratory analysis of
these components at their molecular level is not an easy task and there-
fore, it is not possible to account for each individual feed component and
its reactions in any realistic modeling exercise. Use of kinetic lumps has
been made extensively by various researchers to model FCC units with
varying degree of success. The earliest attempt had only two lumps,
one representing the feed and the second component was the product
[1]. Three, four and five lump models have successively been used
with improved success [2–4]. Clearly, the larger the number of lumps
used, the closer we approach to the real system.

In all these models, feed is represented by a single lump of average
composition and molecular weight. If instead, feed analysis is available
in terms of hydrocarbon groups and their relative proportions, the
reaction kinetics can be better accounted for [5]. Ten and twelve
lumps have been successfully used to simulate industrial FCC units
with better prediction capabilities. Of these lumps, 6 to 8 were used to
characterize feed and intermediate product (light fuel oil 221–343 °C)

and remaining four for the final products namely gasoline, LPG, dry
gas, and coke [6–9].

1.1. FCC feed characterization

Typically for the above models, the accuracy of model prediction
depends on realistic FCC feed characterization in terms of paraffins,
naphthenes, aromatic rings and aromatic substituent groups. Different
test methods are available for the detection of hydrocarbon classes
such as NMR, HPLC and mass spectroscopy. High-performance liquid
chromatography (HPLC) has been used successfully in separating differ-
ent hydrocarbon group types in nonvolatile feedstocks such as residue,
and identifying themolecular species in the asphaltene fraction [10,11].
However, a severe shortcoming of most high-performance liquid chro-
matographic approaches to a hydrocarbon group type of analysis is
the difficulty in obtaining accurate response factors applicable to differ-
ent distillate products. Nuclear magnetic resonance (NMR) has been
used frequently for themeasurement of aromatics and saturated hydro-
carbons (ASTM E-386) as well as hydrogen distribution [12]. Beyond
these results, both C and H in various structural groupings in amolecule
can be determined [13]. As NMR (1H and 13C) is fast and relatively in-
expensive, it has gained a prominent place for the structural group anal-
ysis of petroleum fractions particularly in heavy gas oil range [14,15].
Mass spectroscopy has proved to be highly successful in petroleum in-
dustry, especially with the use of computerized techniques for the
quantitative determination of the percentage of paraffins, cycloparaffins
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and aromatics in the heavy gas oil fraction. High-resolution mass spec-
trometry analysis (HRMS) was used for determining the hydrocarbon
types in diesel range samples before and after the hydrocracking pro-
cess and the results were compared with NMR [16]. Being a very rapid
method for obtaining full hydrocarbon type analyses for a wide range
of fractions up to and including heavy gas oils, mass spectrometry is
considered the most useful technique for the PNA characterization of
petroleum fractions. However, such an elaborate analysis for FCC feed
which is usually in the range of heavy gas oil, can hardly be undertaken
in field laboratories, which are geared to perform only routinemeasure-
ments on a regular basis. There is a clear need to develop a scheme
to relate the detailed composition, desired for a realistic FCC kinetic
model,with the routinelymeasured feed properties in afield laboratory.
Therefore, PNA based FCCmodel application calls for research endeavor
to correlate structural feed analysis with simple, routinely available feed
properties.

There are several empirical correlations available in the literature
[17,18] which relates hydrocarbon groups of heavy and light fuel oil
fractions to properties measured on a regular basis such as specific
gravity and refractive index. The most commonly known procedures
are the n-d-M method (ASTM D-3238) & API correlation [12,19]. The
n-d-M method is used for estimating percentage carbon in aromatic,
naphthenic and paraffinic structures with refractive index, density,
average molecular weight and sulfur as input [20]. However, this
method is very sensitive to refractive index and can only be applied
for samples with paraffin content more than 25 wt.%. The API method
is a generalized method that predicts the mole fraction of paraffinic,
naphthenic and aromatic compounds for an olefin-free hydrocarbon
fraction. Other procedures for the estimation of the composition of
heavy and light petroleum fractions have been discussed by Waterman
et al. [21] and Riazi and Daubert [22]. However, all the existingmethods
are accurate only for data on which the method is based and cannot be
extrapolated for a wide range of properties. Moreover, most of these
methods predict PNA composition in terms of mole or volume basis
which is difficult to validate with mass spectroscopy, NMR or HPLC
analysis obtained on weight basis.

1.2. Artificial neural network (ANN)

Artificial neural networks have been successfully implemented in
the chemical industry, especially in the areas of dynamic modeling.
Bhat and McAvoy [23] used back propagation neural network for the
dynamicmodeling of pH in a CSTR and compared the results with tradi-
tional ARMAmodels. They found ANNmodels to bemore accurate than
ARMA models. Lately an increasing trend is observed to model the
steady state processes also using ANN approach. The height equivalent
of theoretical plate (HETP) and pressure drop for columns with struc-
tured packing were predicted by neural network model and the results
were found to be more accurate than traditional semi-empirical model
[24,25]. Neural network models have also been developed for the pre-
diction of heavy gas oil cracking products in hydrocracking [26,27],
fluid catalytic cracking and catalytic reforming units [28]. An ANN
model was compared with a non-linear statistical model for FCC [29].
The results showed the superiority of the ANNmodel in terms of predic-
tion accuracy. An ANN model based optimizer to separate gas flow
coming out of a hydrocracking reactor was developed [30] and the
results were compared with those obtained from the first principle
models developed by Bayley et al. [31]. The ANN was trained with
data obtained from a commercial simulator (ASPEN PLUS) in the ab-
sence of the availability of sufficient plant data.

Neural networks have been used as soft sensors for the estimation of
various parameters of crude petroleum column and prediction of product
properties [32–34]. Presently, several refineries use ANN models as soft
sensors to estimate output streamquality online and use this information
to control distillation columns. Its applications are also shown in the on-
line data processing for detecting gross errors due to faulty sensors [35].

2. Model performance evaluation criteria

The following criteria were applied to evaluate the model
performance:

Mean Square Error MSEð Þ ¼ 1
n

X
n

yobsi −ypredi

� �2

Root Mean Square Error RMSEð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEð Þ

p

Percent deviation PDð Þ ¼ yi
obs−yi

pred

yi
obs

� 100:

Coefficient of determination (also called R2) as defined below, was
also included here as it reflects the accuracy of prediction. For a perfect
model, R2 = 1.

R2 ¼ 1− SSE
SST

� �

where,

SSE ¼
X
n

yobsi −ypredi

� �2

and

SST ¼
X
n

yobsi −yobs
� �2

:

3. ANNmodel development

The present work aims to develop an artificial neural network based
model which can use routinelymeasured properties of FCC feed such as
density, ASTM distillation temperatures, Conradson carbon residue
(CCR), sulfur and nitrogen content as inputs and provide detailed
composition (wt.% of paraffins, naphthenes and aromatics) as output.
Artificial neural network (ANN) type of modeling is most suited for
this work since we do not know any functional relationship, even if it
exists, between available inputs and desired outputs. Being a black
box approach, ANN does not require, nor attempt to develop, any
mathematical relation, linear or nonlinear, between input and output
and yet can effectively serve as a tool to estimate the detailed composi-
tion of the feed required for FCCU modeling.

Conventionally, the desired network architecture is arrived at by a
constructive [36] or a destructive method [37]. With the development
of evolutionary techniques such as genetic algorithm, it has become
possible to design the network architecture optimally and directly
[38,39]. In the present study, however, the conventional constructive
method has been used to design the networks starting from a small
network and expanding it by adding more layers and neurons in the
hidden layers.

A feed forward error back propagation type of modeling approach
has been followed in the present work which is most suited for numer-
ical NN modeling. The number of neurons for feed forward neural net-
works is approximately proportional to the number of learning data
sets [40,41]. All neurons in the input layer carry information to the neu-
rons in the hidden layers after multiplying each with corresponding
synaptic weights. Each layer has mapping function (somatic operation)
to be suitably chosen. Fig. 1 shows a typical neural unit (neuron) with
linear synaptic operation. Normally, one or two hidden layers are suffi-
cient to estimate any function [42]. The hidden layer may consist of one

156 P.K. Dasila et al. / Fuel Processing Technology 125 (2014) 155–162
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or more layers whichmay be connected in series or parallel or a combi-
nation with the output layer.

In the presentwork, trial and errormethodwas used to findnear op-
timumANNarchitecture for the estimation of detailed feed composition

(PNA). Neural Network Toolbox in MATLAB was used for the purpose.
Various activation functions were investigated using different combina-
tions for the hidden and the output layers. The number of neurons was
also varied systematically in the hidden layers. The least square error

Fig. 1. A typical neuron with linear synaptic operation.

Fig. 2. a. Model 1: ANN architecture with three output neurons. b. Model 2: ANN architecture with one output neuron.

157P.K. Dasila et al. / Fuel Processing Technology 125 (2014) 155–162
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was optimized by the addition of the neurons in the hidden layer. Finally,
two hidden layers were found to be optimum.

In this algorithm, all information moves in the forward direction
from input to output through the hidden layers. Initial weights are arbi-
trarily assigned. During ANN training, the output is compared with the
desired (experimental) known output and the error is back propagated
to adjust the weights. Any non-linear optimization method whether
local or global one can be used to optimize feed-forward neural network
by changing the synapticweights. Themost popular optimizationmethod
has been Levenberg Marquardt algorithm based on variants of gradient
method which was used in the present work. The training performance
varies depending on the objective function and underlying error for a
given problem and network configuration. After the network was fully
trained and validated with new data sets, the network was used to cal-
culate the response to different inputs. Standard connectionswere used
i.e.; network was fully connected between adjacent layers only. Two
different ANN models (Model-1 and Model-2) have been developed in
the present study. Model-1 predicts three output parameters: weight
percent of paraffin, naphthene and aromatic content of FCC feed from
a single ANN architecture having three neurons in the output layer
(Fig. 2a). Model-2 predicts the paraffin, naphthene and aromatic content

individually from three different ANN architectures each with a single
output neuron followed by normalization (Fig. 2b).

4. Experimental

The purpose of this work is to develop a predictive ANN model for
the detailed composition of FCC feeds. In the present study, the different
FCC feed samples as well as individual blend constituents such as VGO,
HVGO, and OHCU bottom samples were obtained from various Indian
refineries processing indigenous crudes as well as low sulfur and high
sulfur crudes from other sources such as Arab, Iran mix (Iran heavy &
Iran light), and Nigerian and a mix thereof.

All the samples were analyzed for their hydrocarbon compositions
through HC22 (22-hydrocarbon component class) analysis based on
the high-resolution mass-spectrometric method. An Autospec Ultima
high-resolution mass spectrometer from Micromass UK was used
for analysis. 5 μl of the sample was introduced into the mass spec-
trometer using the All Glass Heated Inlet System (AGHIS) and heated
to desired temperature. The sample vapors were then allowed to ho-
mogenize in the bulb before being introduced into the source of the
mass spectrometer.

The high-resolution mass spectra of the samples were acquired
using OPUS software. A mass spectrometer with 5000 resolution is suf-
ficient to distinguishmasses up to 470 and to separate ions that differ in
composition by+1 carbon and+2 hydrogen. The spectral data ofmin-
imum7or 8 scanswere averaged and the averaged datawere processed
by Teeter's PCMASPEC — HC22 software for hydrocarbon type analysis
[43]. The method provides the quantification of 22 classes of hydrocar-
bons based on the number of hydrogen atoms relative to the number of
carbon atoms as expressed by the letter z. The principal fragments
formed from paraffin class in a mass spectrometer are at odd masses
with z + 1. The seven saturated molecular species considered in this
analysis have z values of 0,−2,−4,−6,−8,−10 and−12 respectively
which correspond to cycloalkanes with one to seven rings (mono to
heptacycloparaffins). The aromatic hydrocarbon groups start with the
alkyl benzene that has z number of−6 till z = 28 representing ten clas-
ses of aromatics. Four classes of sulfur-aromatics were also reported. This
classification widely covers the hydrocarbon classes present in the VGO

Table 1
Mass spectrometry analysis for different samples (wt.%).

FCC feed HSVGO Mixed feed OHCU bottom HVGO

Paraffins 10.9 10.4 31.4 33.8
Monocycloparaffins 9.8 4.6 23.8 9.3
Dicycloparaffins 7.3 4.7 15.3 5.5
Tricycloparaffins 5.8 5.3 10.5 5.1
Tetracycloparaffins 0.0 1.8 3.6 0.3
Pentacycloparaffins 0.0 0.0 0.0 0
Hexacycloparaffins 0.0 0.0 0.0 0
Heptacycloparaffins 0.0 0.0 0.0 0
Saturates 33.8 26.8 84.6 54.0
Alkylbenzenes 9.2 5.3 6.3 6.3
Benzocycloparaffins 4.7 5.0 4.2 5.1
Benzodicycloparaffins 3.7 4.9 1.6 3.7
Naphthalenes 3.2 9.3 2.2 5.8
Acenaphenes, biphenyls 2.4 6.9 0.0 3.0
Acenaphthylenes, fluorenes 4.3 12.9 0.7 8.6
Phenanthrenes 3.8 9.0 0.1 6.1
Pyrenes 5.4 9.5 0.1 4.2
Chrysenes 2.7 3.4 0.0 0.1
Benzopyrenes 3.1 0.1 0.0 0.0
Aromatics 42.5 66.3 15.2 42.9
Thiophenes 0.3 0.0 0.0 0.0
Benzothiophenes 12.8 4.6 0.1 2.6
Dibenzothiophenes 10.5 2.2 0.0 0.4
Naphthobenzothiophenes 0.0 0.0 0.0 0.0
Sulfur compounds 23.6 6.8 0.1 3.0

Table 2
Range of input data used in ANN model development.

Parameters Minimum Maximum

Density, g/cc 0.8386 0.996
CCR (wt.%) 0.04 1.61
Total sulfur (wt.%) 0.01 4.35
Total nitrogen (ppm) 5 2089
SIMTBP (wt.%)
0% (°C) 37 325
5% (°C) 224 409
10% (°C) 263 428
30% (°C) 337 458
50% (°C) 380 481
70% (°C) 407 506
90% (°C) 427 538
95% (°C) 436 552
100% (°C) 460 581

Paraffins (wt.%) 4.9 27.7
Naphthenes (wt.%) 15.4 55.9
Aromatics (wt.%) 16.5 76.5

Table 3
Summary of ANN model architectures for 13 input variables.

Output parameters Model 1 Model 2

PNA P N A

No. of inputs variables 13 13 13 13
No. of hidden layers 2 2 2 2
No. of neurons in layer-1 14 13 12 9
No. of neurons in layer-2 14 14 14 10
Activation function of layer-1 Tansig Tansig Logsig Tansig
Activation function of layer-2 Logsig Logsig Logsig Logsig
Activation function output layer Purelin Purelin Purelin Purelin
Performance function Mse Mse Msereg Msereg
Training function Trainlm Trainlm Trainlm Trainlm

Table 4
Summary of ANN model architectures for 8 input variables.

Output parameters Model 1 Model 2

PNA P N A

No. of inputs variables 8 8 8 8
No. of hidden layers 2 2 2 2
No. of neurons in layer-1 8 12 12 9
No. of neurons in layer-2 9 13 12 9
Transfer function of layer-1 Logsig Tansig Tansig Tansig
Transfer function of layer-2 Logsig Logsig Logsig Logsig
Transfer function output layer Purelin Purelin Purelin Purelin
Performance function Mse Mse Mse Msereg
Training function Trainlm Trainlm Trainlm Trainlm
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range of samples. Representative analyses for four different samples are
shown in Table 1.

Routine laboratory measurements for density, ASTM distillation
temperatures, CCR, total sulfur and total nitrogen were also made for
all the samples. ASTM D4052 and ASTM D4530 test methods were
used to calculate specific gravity and carbon residue content respective-
ly. Distillation temperatures are measured by simulated distillation
(SIMTBP) using the ASTM D2887 test method (55–538 °C). Total sulfur
wasmeasured by the ASTMD2622 testmethod using the X-ray fluores-
cence spectrometry (XRF) and total nitrogenwasmeasured by the ASTM
D4629 method (CHNS).

A total of 28 samples were analyzed in the laboratory, of which
16 data sets covering the entire range of data (data range given in
Table 2) were used for the development of ANN models. Another six
data sets were used for the testing of the models. The developed ANN
models were validated with remaining six data sets representing FCC
feeds with wide variation in compositions (paraffinic, naphthenic or
aromatic in nature).

5. Results & discussion

In ANN modeling there is always the question about what should
constitute the input parameters and there is no straight forward way
to answer. One, therefore, tends to cautiously choose all possible inputs
that are likely to influence the output. But this comes at a cost. Besides
increasing computation load, particularly during training, it calls for
larger data sets. All experimental data are prone tomeasurement errors,
a ±5%window is a standard norm for the uncertainty in all experimen-
tal data and present measurements are no exception. While training a
neural net with experimentally measured data, learning rates are
usually kept low resulting in further slowing down the training. It is
therefore, desirable to use an optimal set of input parameters where
the contribution of each input is more significant than the noise it
adds. In the present study a learning rate of 0.01 was used for all the
cases investigated (default option in MATLAB).

In the present study, initially all the 13 measured properties were
chosen as input, namely: density, ASTM distillation temperatures —

Table 5
Comparisons of model predictions with experimental observations for two different ANN models with 13 input variables (validation set).

Sample ID Paraffins Naphthenes Aromatics

EXP Model 1 Dev% EXP Model 1 Dev% EXP Model 1 Dev%

1 15.8 14.6 7.71 35.9 36.7 −2.17 48.3 48.7 −0.91
2 14.4 15.1 −5.12 23.3 23.2 0.53 62.2 61.7 0.83
3 4.9 5.0 −1.56 21.1 22.2 −5.09 74.0 72.8 1.55
4 10.9 16.7 −52.74 29.9 26.9 9.90 59.2 56.4 4.71
5 10.4 9.2 11.40 18.5 24.6 −33.21 71.0 66.1 6.84
6 6.3 6.5 −3.96 26.2 30.6 −16.75 67.5 62.9 6.87

Sample ID Paraffins Naphthenes Aromatics

EXP Model 2 Dev% EXP Model 2 Dev% EXP Model 2 Dev%

1 15.8 16.9 −6.95 35.9 31.7 11.63 48.3 51.4 −6.37
2 14.4 12.6 12.50 23.3 26.9 −15.47 62.2 60.5 2.74
3 4.9 5.4 −9.15 21.1 23.8 −12.75 74.0 70.9 4.24
4 10.9 11.9 −9.75 29.9 29.5 1.19 59.2 58.5 1.20
5 10.4 12.1 −16.23 18.5 19.1 −3.23 71.0 68.8 3.08
6 6.3 6.4 −1.18 26.2 26.6 −1.47 67.5 67.0 0.68

RMS error: Model 1 = 2.97, Model 2 = 2.04.
R2 value: Model 1 = 0.98, Model 2 = 0.993.

Fig. 3. Parity plot between ANN predicted compositions and experimental values for models using 13 input variables.
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IBP, 5%,10%,30%, 50%, 70%, 90%, 95% and FBP, Conradson carbon residue
(CCR), total sulfur and total nitrogen. Subsequently the sensitivity of
each variablewas examined. Based on the sensitivity study and intuitive
reasoning, five of the 13 variables were dropped. IBP and FBP can be sel-
domdeterminedwith any amount of certaintywhile CCR, sulfur and ni-
trogen content in VGO are unlikely to influence its PNA composition.
Remaining 8 — variables were used as inputs. Results are presented
for both 13 as well as 8 inputs.

Tables 3 and 4 provide the details of ANNmodel architecture used in
the present study alongwith activation functions for the 13 and 8 inputs
respectively. Table 5 gives a comparison between experimental values
and model predictions of gas oil composition for 13 inputs using both
the models. Also included in this table are the percent deviations of
the predicted valued from the measured ones, root mean square error
and R2 values. While both the models have acceptable levels of error,
Model 2 scores over Model 1 in all respects. This is in linewith the com-
mon knowledge that it is better to develop architectures with only one
neuron in the output layer i.e. each model should predict only one
parameter. For Model 1, maximum deviation is 52.7% whereas it is
only 16.2% for Model 2. Fig. 3 shows a parity plot between predicted
and measured percent compositions for Model 1 and 2 using 13 input

parameters. Table 6 and Fig. 4 provide similar information when only
8 inputs were used in place of 13.

A comparison of Model 1 results for the two cases (with inputs 13
and 8) shows that input parameters lead to less RMS error (2.04 against
2.97) and higher coefficient of determination, R2 (0.992 against 0.98).
Similar trend is observed for Model 2 also, however, less prominent.
RMS error for Model 2 with 13-inputs was 2.04 which got reduced to
1.71 for 8 inputs, but R2 values were nearly the same for 13 as well as
8 inputs. Clearly the dropped input parameters namely IBP, FBP, total
sulfur, total nitrogen and CCR do not have noticeable role in predicting
the FCC feed compositions but their associated measurement errors
affect the network model performance.

5.1. Usefulness of the present study

Steady state FCC modeling and plant simulation have been tried
since 1970with varying degrees of success. For a reactor, reaction kinet-
ics is perhaps the most important part of such studies and the present
investigation can enable the process engineer to build kinetic models
more accurately. These steady statemodels are valuable tools for thede-
sign of new plants, and analysis and optimization of operating units.

Table 6
A comparison of model predictions with experimental observations for two different ANN models with 8 input variables (validation set).

Sample ID Paraffins Naphthenes Aromatics

EXP Model 1 Dev% EXP Model 1 Dev% EXP Model 1 Dev%

1 15.8 15.3 2.83 35.9 36.2 −0.71 48.3 48.5 −0.40
2 14.4 14.3 0.61 23.3 23.3 0.08 62.2 62.4 −0.33
3 4.9 4.8 2.31 21.1 20.8 1.20 74.0 74.4 −0.49
4 10.9 13.3 −22.03 29.9 26.2 12.40 59.2 60.5 −2.21
5 10.4 10.7 −3.27 18.5 23.3 −26.19 71.0 65.9 7.16
6 6.3 6.9 −9.92 26.2 24.6 6.17 67.5 68.5 −1.47

Sample ID Paraffins Naphthenes Aromatics

EXP Model 2 Dev% EXP Model 2 Dev% EXP Model 2 Dev%

1 15.8 15.8 0.19 35.9 36.4 −1.47 48.3 47.8 1.03
2 14.4 13.5 6.25 23.3 22.6 2.91 62.2 63.9 −2.70
3 4.9 4.5 7.64 21.1 23.3 −10.46 74.0 72.2 2.48
4 10.9 13.4 −22.99 29.9 32.3 −8.08 59.2 54.3 8.31
5 10.4 9.4 9.74 18.5 18.9 −2.14 71.0 71.7 −1.01
6 6.3 6.8 −7.25 26.2 26.7 −1.93 67.5 66.5 1.43

RMS error: Model 1 = 2.04, Model 2 = 1.71.
R2 value: Model 1 = 0.992, Model 2 = 0.994.

Fig. 4. Parity plot between ANN predicted compositions and experimental values for models using 8 input variables.
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As mentioned earlier, for a more detailed kinetic model of FCC unit
such as a 10- and 12-lump model, a detailed feed characterization is
required. The present work provides such a scheme without having to
actually embark on a detailed laboratory investigation. The present
model was used to characterize several gas oil samples which provided
a basis for the development of a new 10-lump kinetic model. Themodel
calculated product yields were comparable to predictions made with
ASPEN FCC simulator and also matched well with plant observations
for all the cases investigated, thus vindicating the usefulness of the
present study. Some of these results were presented at the Energy
System Modeling & Optimization Conference and are available in the
conference proceedings [44].

6. Conclusion

The present work aimed to predict detailed composition of heavy
gas oil feeds to FCCU in terms of hydrocarbon types such as weight
percent of paraffins, naphthenes and aromatics. ANN models were de-
veloped and tested using 13 inputs and also with a subset of 8 inputs.
The latter models were found to perform better resulting in a lower
RMS error and a higher R2 coefficient. The eight input parameters includ-
ed density and ASTM distillation temperatures (at 5, 10 30,50,70,90 and
95%). The other 5 input parameters included in 13 inputs were IBP, FBP,
total sulfur, total nitrogen and CCR which did not seems to have any sig-
nificant effect on the output in termsof the improvement of accuracy. The
experimental errors in these 5 parameters, however, increased the error.
Model-2, which used three different architectures with only one neuron
each in the output layer to separately predict paraffins, naphthenes and
aromatics, performed better than Model-1 with multiple neurons in the
output layer. Model-2 with 8 input parameters predicted gas oil compo-
sitionswith±10% of the experimental valueswithmore than 50% values
being within ±3%.

Nomenclature
CCR Conradson carbon residue, wt.%
FBP finial boiling point, °C
HSVGO high sulfur vacuum gas oil
HVGO heavy vacuum gas oil
IBP initial boiling point, °C
MSE mean square error
n number of data points
OHCU overhead hydrocracker unit
PD percent deviation
R2 coefficient of determination
RMSE root mean square error
SSE sum square error
SST total sum of squares
VGO vacuum gas oil
yiobs observed value from laboratory analysis
yipred predicted value from ANN model
yobs mean of the observed values.
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