REFERENCES

- 1. Kala, C.P., *Deluge, disaster and development in Uttarakhand Himalayan region of India: challenges and lessons for disaster management.* International Journal of Disaster Risk Reduction, 2014. **8**: p. 143-152.
- 2. Sridharan, R., et al., *Lessons from Kedarnath tragedy of Uttarakhand Himalaya, India.* Current Science, 2013. **105**(11): p. 1472.
- 3. Miranda, K., A. Molinaro, and T. Razafindralambo, *A survey on rapidly deployable solutions for post-disaster networks*. IEEE Communications Magazine, 2016. **54**(4): p. 117-123.
- 4. Gupta, S., B. Sahay, and P. Charan, *Relief Network Model for Efficient Disaster Management and Disaster Recovery*, in *Managing Humanitarian Logistics*2016, Springer. p. 85-104.
- 5. Evans, J.B., et al., *The rapidly deployable radio network*. IEEE Journal on selected areas in communications, 1999. **17**(4): p. 689-703.
- 6. Ali, K.A. and H.T. Mouftah, *Wireless personal area networks architecture and protocols for multimedia applications*. Ad hoc networks, 2011. **9**(4): p. 675-686.
- 7. Misra, S., M.P. Kumar, and M.S. Obaidat, *Connectivity preserving localized coverage algorithm for area monitoring using wireless sensor networks*. Computer Communications, 2011. **34**(12): p. 1484-1496.
- 8. Mase, K., *How to deliver your message from/to a disaster area.* IEEE Communications Magazine, 2011. **49**(1).
- 9. Aguirre, E., et al., Design and Implementation of Context Aware Applications With Wireless Sensor Network Support in Urban Train Transportation Environments. IEEE Sensors Journal, 2017. **17**(1): p. 169-178.
- 10. Ojuroye, O., et al., Smart Textiles for Smart Home Control and Enriching Future Wireless Sensor Network Data, in Sensors for Everyday Life2017, Springer. p. 159-183.
- 11. Kurt, S., et al., *Packet size optimization in wireless sensor networks for smart grid applications*. IEEE Transactions on Industrial Electronics, 2017. **64**(3): p. 2392-2401.
- 12. Rothenberg, J., United States. Defense Advanced Research Projects Agency. The nature of modeling. Citeseer, 1989. 20.
- 13. Nemeroff, J.L., et al. *Networked sensor communications for the objective force*. in *AeroSense 2002*. 2002. International Society for Optics and Photonics.
- Biagioni, E.S. and K. Bridges, *The application of remote sensor technology to assist the recovery of rare and endangered species.* International Journal of High Performance Computing Applications, 2002. 16(3): p. 315-324.

- 15. Cheng, G., Accurate TOA-based UWB localization system in coal mine based on WSN. Physics Procedia, 2012. 24: p. 534-540.
- 16. Luoh, L., ZigBee-based intelligent indoor positioning system soft computing. Soft Computing, 2014. **18**(3): p. 443-456.
- Pires, R.P., et al., Evaluation of an rssi-based location algorithm for wireless sensor networks. IEEE Latin America Transactions, 2011. 9(1): p. 830-835.
- 18. Huang, C.-N. and C.-T. Chan, *ZigBee-based indoor location system by knearest neighbor algorithm with weighted RSSI*. Procedia Computer Science, 2011. **5**: p. 58-65.
- 19. Xiao, Q., *Range-free and range-based localization of wireless sensor networks*, 2011, The Hong Kong Polytechnic University.
- 20. Gharghan, S.K., et al., Accurate Wireless Sensor Localization Technique Based on Hybrid PSO-ANN Algorithm for Indoor and Outdoor Track Cycling. IEEE Sensors Journal, 2016. **16**(2): p. 529-541.
- 21. Mao, G., B. Fidan, and B.D. Anderson, *Wireless sensor network localization techniques*. Computer Networks, 2007. **51**(10): p. 2529-2553.
- 22. Farahani, S., ZigBee wireless networks and transceivers2011: newnes.
- 23. Seidel, S.Y. and T.S. Rappaport, 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE transactions on Antennas and Propagation, 1992. **40**(2): p. 207-217.
- 24. Seybold, J.S., *Introduction to RF propagation*2005: John Wiley & Sons.
- 25. Lee, W.C., *Mobile communications engineering*1982: McGraw-Hill Professional.
- 26. De Jong, Y.L. and M.H. Herben, *A tree-scattering model for improved propagation prediction in urban microcells*. IEEE Transactions on Vehicular Technology, 2004. **53**(2): p. 503-513.
- 27. Mazomenos, E., J. Reeve, and N. White, *An accurate range-only tracking system using wireless sensor networks*. Procedia Chemistry, 2009. **1**(1): p. 1199-1202.
- Meng, W., L. Xie, and W. Xiao, *Decentralized TDOA sensor pairing in multihop wireless sensor networks*. Signal Processing Letters, IEEE, 2013. 20(2): p. 181-184.
- 29. Dakkak, M., et al., *Indoor localization method based on RTT and AOA using coordinates clustering*. Computer networks, 2011. **55**(8): p. 1794-1803.
- 30. Jin, R., et al., An RSSI-based localization algorithm for outliers suppression in wireless sensor networks. Wireless Networks, 2015: p. 1-9.
- 31. Aiello, M., R. de Jong, and J. de Nes. *Bluetooth broadcasting: How far can we go? An experimental study.* in *Pervasive Computing (JCPC), 2009 Joint Conferences on.* 2009. IEEE.
- 32. Vivek Kaundal, P.S., Devender Saini, Manish Prateek, Location Fingerprinting Supported Unilateral Algorithm based on Experimental

Study of Localization in Disaster Prone Area International Journal of Computer Science and Information Security, 2016. **14**: p. 162-175.

- 33. Berke, P.R., J. Kartez, and D. Wenger, *Recovery after disaster: achieving sustainable development, mitigation and equity.* Disasters, 1993. **17**(2): p. 93-109.
- 34. O'Brien, G., et al., *Climate change and disaster management*. Disasters, 2006. **30**(1): p. 64-80.
- 35. Bai, Y., et al. Emergency communication system by heterogeneous wireless networking. in Wireless Communications, Networking and Information Security (WCNIS), 2010 IEEE International Conference on. 2010. IEEE.
- 36. Erdelj, M. and E. Natalizio. UAV-assisted disaster management: Applications and open issues. in Computing, Networking and Communications (ICNC), 2016 International Conference on. 2016. IEEE.
- 37. Ray, N.K. and A.K. Turuk, *A framework for post-disaster communication using wireless ad hoc networks.* Integration, the VLSI Journal, 2016.
- Minh, Q.T., et al., On-the-fly establishment of multihop wireless access networks for disaster recovery. IEEE Communications Magazine, 2014. 52(10): p. 60-66.
- 39. Minh, Q.T., et al., *On-site configuration of disaster recovery access networks made easy.* Ad hoc networks, 2016. **40**: p. 46-60.
- 40. Briante, O., et al., *Comvivor: an evolutionary communication framework based on survivors' devices reuse*. Wireless personal communications, 2015. **85**(4): p. 2021-2040.
- 41. Fujiwara, T. and T. Watanabe, *An ad hoc networking scheme in hybrid networks for emergency communications*. Ad hoc networks, 2005. **3**(5): p. 607-620.
- 42. Chipara, O., et al. WIISARD: a measurement study of network properties and protocol reliability during an emergency response. in Proceedings of the 10th international conference on Mobile systems, applications, and services. 2012. ACM.
- 43. Brundtland, G., et al., *Our common future* (\'*brundtland report*\'). 1987.
- 44. Mukherjee, S., Analytical Modeling of Heterogeneous Cellular Networks2014: Cambridge University Press.
- 45. Sharma, R. and S. Goel, *Stand-alone hybrid energy system for sustainable development in rural India*. Environment, Development and Sustainability, 2016. **18**(6): p. 1601-1614.
- 46. Zheng, Z., et al., *Sustainable communication and networking in two-tier green cellular networks*. IEEE Wireless Communications, 2014. **21**(4): p. 47-53.
- 47. Huang, R., et al., Design and implementation of communication architecture in a distributed energy resource system using IEC 61850

standard. International Journal of Energy Research, 2016. **40**(5): p. 692-701.

- 48. Alanne, K. and A. Saari, *Distributed energy generation and sustainable development*. Renewable and sustainable energy reviews, 2006. **10**(6): p. 539-558.
- 49. Makhija, S.P. and S. Dubey, *Feasibility of PV-biodiesel hybrid energy* system for a cement technology institute in India. Environment, Development and Sustainability: p. 1-11.
- 50. Darwish, Z.A., et al., *Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: an experimental study*. Environment, Development and Sustainability, 2016: p. 1-20.
- 51. Valkering, P., et al., *An analysis of learning interactions in a cross-border network for sustainable urban neighbourhood development.* Journal of Cleaner Production, 2013. **49**: p. 85-94.
- 52. Bakıcı, T., E. Almirall, and J. Wareham, *A smart city initiative: the case of Barcelona*. Journal of the Knowledge Economy, 2013. **4**(2): p. 135-148.
- 53. Usman, A. and S.H. Shami, *Evolution of communication technologies for smart grid applications*. Renewable and sustainable energy reviews, 2013. **19**: p. 191-199.
- 54. Wang, A. and X.Q. Zhang. Application of the Internet of Things Technology in Food Safety Monitoring and Controlling System. in Advanced Materials Research. 2014. Trans Tech Publ.
- 55. Pearce, L., *Disaster management and community planning, and public participation: how to achieve sustainable hazard mitigation.* Natural Hazards, 2003. **28**(2): p. 211-228.
- 56. Bello, O.M. and Y.A. Aina, Satellite remote sensing as a tool in disaster management and sustainable development: towards a synergistic approach. Procedia-Social and Behavioral Sciences, 2014. **120**: p. 365-373.
- 57. Shaw, R., F. Mallick, and A. Islam, *Disaster risk reduction approaches in Bangladesh*2013: Springer.
- 58. Sahay, B., N.V.C. Menon, and S. Gupta, *Humanitarian logistics and disaster management: the role of different stakeholders*, in *Managing Humanitarian Logistics*2016, Springer. p. 3-21.
- Ooi, G.L., et al., *Near real-time landslide monitoring with the smart soil particles*. Japanese Geotechnical Society Special Publication, 2016. 2(28): p. 1031-1034.
- 60. Gioia, E., et al., Application of a process-based shallow landslide hazard model over a broad area in Central Italy. Landslides, 2016. **13**(5): p. 1197-1214.
- 61. Wu, C.-I., et al., *An intelligent slope disaster prediction and monitoring system based on WSN and ANP*. Expert Systems with Applications, 2014. **41**(10): p. 4554-4562.

- 62. Kohvakka, M., et al. Performance analysis of IEEE 802.15. 4 and ZigBee for large-scale wireless sensor network applications. in Proceedings of the 3rd ACM international workshop on Performance evaluation of wireless ad hoc, sensor and ubiquitous networks. 2006. ACM.
- 63. Ruiz-Garcia, L., P. Barreiro, and J. Robla, *Performance of ZigBee-based* wireless sensor nodes for real-time monitoring of fruit logistics. Journal of Food Engineering, 2008. **87**(3): p. 405-415.
- 64. Erd, M., et al., *Event monitoring in emergency scenarios using energy efficient wireless sensor nodes for the disaster information management.* International Journal of Disaster Risk Reduction, 2016. **16**: p. 33-42.
- 65. Ali, A., et al., *Efficient predictive monitoring of wireless sensor networks*. International Journal of Autonomous and Adaptive Communications Systems, 2012. **5**(3): p. 233-254.
- 66. Hartenstein, H. and L. Laberteaux, *A tutorial survey on vehicular ad hoc networks*. IEEE Communications Magazine, 2008. **46**(6).
- 67. Ullah, S., et al., *A comprehensive survey of wireless body area networks*. Journal of medical systems, 2012. **36**(3): p. 1065-1094.
- 68. Savarese, C., J.M. Rabaey, and J. Beutel. Location in distributed ad-hoc wireless sensor networks. in Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP'01). 2001 IEEE International Conference on. 2001. IEEE.
- 69. Mesmoudi, A., M. Feham, and N. Labraoui, *Wireless sensor networks localization algorithms: a comprehensive survey.* arXiv preprint arXiv:1312.4082, 2013.
- 70. Gezici, S., *A survey on wireless position estimation*. Wireless personal communications, 2008. **44**(3): p. 263-282.
- 71. Gracioli, G., et al., *Evaluation of an RSSI-based location algorithm for wireless sensor networks*. Latin America Transactions, IEEE (Revista IEEE America Latina), 2011. **9**(1): p. 830-835.
- 72. Halder, S. and A. Ghosal, *A survey on mobility-assisted localization techniques in wireless sensor networks*. Journal of Network and Computer Applications, 2016. **60**: p. 82-94.
- 73. Nedjati, A., B. Vizvari, and G. Izbirak, *Post-earthquake response by small UAV helicopters*. Natural Hazards, 2016. **80**(3): p. 1669-1688.
- 74. Pantazis, N.A. and D.D. Vergados, *A survey on power control issues in wireless sensor networks*. IEEE Communications Surveys and Tutorials, 2007. **9**(1-4): p. 86-107.
- 75. Akyildiz, I.F., et al., *Wireless sensor networks: a survey.* Computer networks, 2002. **38**(4): p. 393-422.
- 76. Shaikh, F.K., S. Zeadally, and F. Siddiqui, *Energy efficient routing in wireless sensor networks*, in *Next-Generation Wireless Technologies*2013, Springer. p. 131-157.

- 77. Levis, P., et al., *TinyOS: An operating system for sensor networks*, in *Ambient intelligence*2005, Springer. p. 115-148.
- 78. Dunkels, A., B. Grönvall, and T. Voigt. *Contiki-a lightweight and flexible operating system for tiny networked sensors*. in *Local Computer Networks*, 2004. 29th Annual IEEE International Conference on. 2004. IEEE.
- 79. Anastasi, G., et al., *Energy conservation in wireless sensor networks: A survey*. Ad hoc networks, 2009. **7**(3): p. 537-568.
- 80. IRIS, Memsic, Inc. <u>http://www.memsic.com/wireless-sensor-networks/XM2110CA</u>, 2016.
- 81. *MicaZ, Memsic, Inc.* <u>http://www.memsic.com/wireless-sensor-networks/MPR2400CB</u>, 2016.
- 82. *iMote2*, *Intel Research*. <u>http://tinyos.stanford.edu/tinyos-</u> <u>wiki/index.php/Imote2</u>, 2016.
- 83. SunSpot, Sun systems. <u>http://www.sunspotworld.com/</u>, 2016.
- 84. *Waspmote, Libelium Inc.* <u>http://www.libelium.com/products/waspmote/</u>, 2016.
- 85. WiSMote, Arago systems. <u>http://www.aragosystems.com/en/wisnet-item/wisnet-wismote-item.html</u>, 2016.
- 86. He, T., et al., *Range-free localization and its impact on large scale sensor networks.* ACM Transactions on Embedded Computing Systems (TECS), 2005. **4**(4): p. 877-906.
- 87. Anzai, D. and S. Hara. An RSSI-based MAP localization method with channel parameters estimation in wireless sensor networks. in Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th. 2009. IEEE.
- 88. Blywis, B., et al. A localization framework for wireless mesh networksanchor-free distributed localization in the des-testbed. in Indoor Positioning and Indoor Navigation (IPIN), 2010 International Conference on. 2010. IEEE.
- 89. Liu, W., et al. Radio map position inference algorithm for indoor positioning systems. in 2012 18th IEEE International Conference on Networks (ICON). 2012. IEEE.
- 90. Luo, X., W.J. O'Brien, and C.L. Julien, *Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites.* Advanced Engineering Informatics, 2011. **25**(2): p. 355-363.
- Meng, W., L. Xie, and W. Xiao, *Decentralized TDOA sensor pairing in multihop wireless sensor networks*. IEEE Signal Processing Letters, 2013. 20(2): p. 181-184.
- 92. Nasipuri, A. and K. Li. A directionality based location discovery scheme for wireless sensor networks. in Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications. 2002. ACM.
- 93. Savvides, A., C.-C. Han, and M.B. Strivastava. Dynamic fine-grained localization in ad-hoc networks of sensors. in Proceedings of the 7th

annual international conference on Mobile computing and networking. 2001. ACM.

- 94. Othman, S.N., Node positioning in zigbee network using trilateration method based on the received signal strength indicator (RSSI). European Journal of Scientific Research, 2010. **46**(1): p. 048-061.
- 95. Shang, F., et al., A location estimation algorithm based on RSSI vector similarity degree. International Journal of Distributed Sensor Networks, 2014. **10**(8): p. 371350.
- Sahoo, P.K. and I. Hwang, Collaborative localization algorithms for wireless sensor networks with reduced localization error. Sensors, 2011. 11(10): p. 9989-10009.
- 97. Subhan, F., H. Hasbullah, and K. Ashraf, *Kalman filter-based hybrid indoor position estimation technique in bluetooth networks*. International Journal of Navigation and Observation, 2013. **2013**.
- 98. Rusu, C.V. and H.-S. Ahn. *Optimal network localization by particle swarm optimization*. in *Intelligent Control (ISIC), 2011 IEEE International Symposium on.* 2011. IEEE.
- 99. Payal, A., C.S. Rai, and B.R. Reddy, Analysis of some feedforward artificial neural network training algorithms for developing localization framework in wireless sensor networks. Wireless personal communications, 2015. **82**(4): p. 2519-2536.
- 100. Thongpul, K., N. Jindapetch, and W. Teerapakajorndet. A neural network based optimization for wireless sensor node position estimation in industrial environments. in Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010 International Conference on. 2010. IEEE.
- Chuang, P.-J. and Y.-J. Jiang, *Effective neural network-based node localisation scheme for wireless sensor networks*. IET Wireless Sensor Systems, 2014. 4(2): p. 97-103.
- 102. Nerguizian, C. and V. Nerguizian. Indoor fingerprinting geolocation using wavelet-based features extracted from the channel impulse response in conjunction with an artificial neural network. in Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on. 2007. IEEE.
- 103. Rahman, M., Y. Park, and K.-D. Kim, RSS-Based Indoor Localization Algorithm for Wireless Sensor Network Using Generalized Regression Neural Network. Arabian Journal for Science & Engineering (Springer Science & Business Media BV), 2012. 37(4).
- 104. Di, M., et al. Range-free localization based on hop-count quantization in wireless sensor networks. in TENCON 2009-2009 IEEE Region 10 Conference. 2009. IEEE.
- 105. Oguejiofor, O., et al., *Trilateration based localization algorithm for wireless sensor network*. International Journal of Science and Modern Engineering (IJISME), 2013. **1**(10): p. 2319-6386.

- 106. Rao, R.V., *Teaching-Learning-Based Optimization Algorithm*, in *Teaching Learning Based Optimization Algorithm*2016, Springer. p. 9-39.
- 107. Chruszczyk, Ł. and A. Zając, *Comparison of indoor/outdoor, RSSI-based positioning using 433, 868 or 2400 MHz ISM bands*. International Journal of Electronics and Telecommunications, 2016. **62**(4): p. 395-399.
- 108. Specification, Z., *ZigBee Alliance*. ZigBee Document 053474r06, Version, 2006. **1**.
- 109. Elsayed, S.M., R.A. Sarker, and D.L. Essam, *A new genetic algorithm for* solving optimization problems. Engineering Applications of Artificial Intelligence, 2014. **27**: p. 57-69.
- 110. Karaboga, D., et al., *A comprehensive survey: artificial bee colony (ABC) algorithm and applications.* Artificial Intelligence Review, 2014. **42**(1): p. 21-57.
- 111. Cao, C., Q. Ni, and X. Yin. Comparison of particle swarm optimization algorithms in wireless sensor network node localization. in Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on. 2014. IEEE.
- 112. Alliance, Z., Zigbee specification, 2006.
- 113. Thadewald, T. and H. Büning, *Jarque–Bera test and its competitors for testing normality–a power comparison*. Journal of Applied Statistics, 2007. **34**(1): p. 87-105.
- 114. Hanusz, Z., J. Tarasinska, and W. Zielinski, *SHAPIRO–WILK TEST WITH KNOWN MEAN*. REVSTAT–Statistical Journal, 2016. **14**(1): p. 89-100.
- 115. Hanusz, Z., J. Tarasinska, and W. Zielinski, *Shapiro-Wilk test with known mean*. REVSTAT-Statistical Journal, 2016. **14**(1): p. 89-100.