LIST OF FIGURES

Figure	Description	Page No.
Figure 1.1	U.S. Energy Production by Fuel, 1980-2040.	2
Figure 1.2	U.S. Dry Natural Gas Production.	3
Figure 1.3	Shale Reservoirs in Lower 48 States.	3
Figure 1.4	Increase in production and well count in the Barnett shale from 1990 to 2010.	4
Figure 1.5	Permeability of Nano-Darcy for Shale Gas Reservoirs.	4
Figure 1.6	Core Sample from Barnett Shale.	5
Figure 1.7	Pictorial Representation of Horizontal Drilling and Multi-Stage Hydraulic Fracturing.	9
Figure 1.8	Four Countries Producing Commercial Volumes of Shale Gas and Tight Oil Reservoirs.	9
Figure 2.1	Gas Shale Storage and Flow Capacity Diagram Showing pore type, flow type, dominant particle motion within a given flow regime. Ion-milled SEM image of Devonian gas shale.	14
Figure 2.2	Comparison of Gas Flow (a) in micro pores where the flow is no slip and (b) in nano pores where the flow is slip.	15
Figure 2.3	Schematic of gas molecule locations in a small part of a kerogen grain pore system of a mudrock.	15
Figure 2.4	Gas Evolution and Production in Shale Gas Sediments at different length Shales.	16
Figure 2.5	Error caused by neglecting the contribution of slip flow on productivity of fractured horizontal wellbore.	17
Figure 2.6	Schematic of Quad Porosity Model.	17
Figure 2.7	Sketch of fractured horizontal well in a shale gas reservoir and the convergence of flow around the well.	18
Figure 2.8	Effective fracture concept for multiply fractured horizontal well in an unconventional tight reservoir.	19
Figure 2.9	Trilinear Flow Model	20
Figure 2.10	Trilinear model match of the field data	21
Figure 2.11	Trilinear Model Effect of Outer Reservoir	22
Figure 2.12	Trilinear Model Effect of Outer Reservoir A- $\rho_f=0.8f/ft$, B- $\rho_f=2 f/ft$	22
Figure 2.13	Trilinear Model-Effect of inner Reservoir Matrix Permeability km=1E-8 mD until km=1E-1	23
Figure 2.14	Trilinear Model-Effect of Inner Reservoir Matrix Permeability between Unconventional reservoir vs homogeneous tight conventional reservoir.	23
Figure 2.15	Explanation of Dual Porosity Model	25
Figure 2.16	Discretization of Matrix Blocks: a. MINC, b. Dual Porosity Model.	26
Figure 2.17	Illustration of Flow in Dual Porosity Model and Dual Permeability Model.	27

Figure 3.1	Reservoir Model representing the flow of gas from matrix to	31
1 15010 5.1	hydraulic fractures and from hydraulic fracture to well bore.	51
Figure 3.2	Schematic representation of gas flow from matrix to fracture.	32
Figure 3.3	Schematic view of the 3D Reservoir.	39
Figure 3.4	Discretization and notation indication for a 3D pressure equation.	40
Figure 3.5	Schematic Representation of wellbore in the 5 th Layer from top.	42
Figure 3.6	Algorithm representing the procedure for solving the gas flow in the matrix.	45
Figure 4.1	Schematic flow of gas in the hydraulic fracture.	46
Figure 4.2	Discretization and notation indication for a 2D pressure equation for Matrix.	50
Figure 4.3	Discretization and notation indication for a 2D pressure equation for Hydraulic Fracture.	55
Figure 4.4(a)	Schematic representation of a Single Hydraulically Fractured Reservoir.	58
Figure 4.4(b)	Schematic representation of a Two Hydraulically Fractured Reservoir.	58
Figure 4.4(c)	Schematic representation of a Three Hydraulically Fractured Reservoir.	58
Figure 4.4(d)	Schematic representation of a Four Hydraulically Fractured Reservoir.	59
Figure 4.5	Algorithm representing the procedure for solving the gas flow in the hydraulic fractures.	62
Figure 5.1	Shale reservoir with horizontal wellbore and no hydraulic fractures.	63
Figure 5.2	Individual matrix block pressure variation with time.	64
Figure 5.3	Gas flow rate variation with respect to time in different matrix blocks.	65
Figure 5.4	Schematic representation of shale reservoir with horizontal wellbore and four Hydraulic fractures.	65
Figure 5.5	Pressure variation at different block of hydraulic fractured zone with respect to time.	66
Figure 5.6	Gas flow rate variation with respect to time in different fractured blocks.	67
Figure 5.7	Gas flow rate variation with time at different Hydraulic Fracture Stages.	68
Figure 6.1	Reservoir Model with a horizontal well bore and Hydraulic fractures in middle of the reservoir.	69
Figure 6.2	3D View of the Reservoir Model	70
Figure 6.3	Simulation result for the reservoir model for Gas Rate on daily basis.	71
Figure 6.4	Simulation result for the reservoir model for Gas Rate on Monthly basis.	71

Eiguro 6 5	Processor Distribution of Lavar 5 after 1 Veer Production	72
Figure 6.5	Pressure Distribution of Layer 5 after 1 Year Production.	
Figure 6.6	Pressure Distribution of Layer 5 after 3 Years Production.	72
Figure 7.1	Box plot of Collected Matrix Porosity.	74
Figure 7.2	Histogram of Matrix Porosity Data.	74
Figure 7.3	Effect of Matrix Porosity on Cumulative Gas Production.	75
Figure 7.4	Effect of Matrix Porosity on Rate of Gas Production.	75
Figure 7.5	Effect of Matrix Porosity on Reservoir Pressure.	76
Figure 7.6	Box plot of Langmuir Pressure Data.	76
Figure 7.7	Histogram Representation of Langmuir Pressure Data.	77
Figure 7.8	Effect of Langmuir Pressure on Cumulative Gas Production.	77
Figure 7.9	Effect of Langmuir Pressure on Rate of Gas Production.	78
Figure 7.10	Effect of Langmuir Pressure on Reservoir Pressure.	78
Figure 7.11	Box plot of Langmuir Volume Data.	79
Figure 7.12	Histogram of Langmuir Volume Data.	79
Figure 7.13	Effect of Langmuir Volume on Cumulative Gas Production.	80
Figure 7.14	Effect of Langmuir Volume on Rate of Gas Production.	80
Figure 7.15	Effect of Langmuir Volume on Reservoir Pressure.	81
Figure 7.16	Effect of number of hydraulic fractures on cumulative gas	81
8	production.	-
Figure 7.17	Effect of number of hydraulic fractures on rate of gas	82
1.9010 / 11 /	production.	-
Figure 7.18	Effect of number of hydraulic fractures on reservoir pressure.	82
Figure 7.19	Impact of Hydraulic Fracture Permeability on Cumulative Gas	83
Figure 7.17	Production.	00
Figure 7.20	Impact of Hydraulic Fracture Permeability on Rate of Gas	84
119410 / 120	Production.	01
Figure 7.21	Impact of Hydraulic Fracture Permeability on Average	85
1 19010 7.21	Reservoir Pressure.	05
Figure 7.22	Impact of Hydraulic Fracture Width on Cumulative Gas	86
1 iguie 7.22	Production.	00
Figure 7.23	Impact of Hydraulic Fracture Width on Rate of Gas	86
1 iguie 7.25	Production.	00
Figure 7.24	Impact of Hydraulic Fracture Width on Average Reservoir	87
1 igure 7.24	Pressure.	07
Figure 8.1	Variation of Gas Flow Rate (Mscf/Day) Vs Time (DAYS).	88
Figure 8.2	Variation of Gas Flow Rate (Mscf/Day) Vs Time (DAYS).	89
Figure 8.3	Variation of Gas Flow Rate (Mscf/Day) Vs Time (DAYS).	90
Figure 8.4	Variation of Gas Flow Rate (Mscf/Day) Vs Time (DAYS).	90
Figure 8.5	Variation of Gas Flow Rate (Mscf/Day) Vs Time (DAYS).	92
V		
Figure 8.6	Variation of Gas Flow Rate (Mscf/Day) Vs Time (DAYS).	<u>93</u> 94
Figure 8.7	The graph of cumulative production versus time at different	94
Elerer 0.0	fracture stages	04
Figure 8.8	The pressure variations in reservoir versus time at different	94
	fracture stages	