TABLE OF CONTENTS

Certificate	i
Acknowledgement	ii
Abstract	iii
Table of Contents	viii
List of Figures	xii
List of Tables	xvi
Nomenclature	xvii
Chapter 1: Introduction	1
1.1 Aerodynamics Flow Regimes	2
1.2 The Hypersonic Flowfield	5
1.2.1 Thin Shock Layer	5
1.2.2 Entropy Layer	6
1.2.3 Viscous Interaction	7
1.2.4 High Temperature Flow	8
1.2.5 Low Density Flow	9
1.3 Forces and Heat Transfer at Hypersonic Speeds	10
1.4 Need for Blunt body	14
1.5 Mechanism for Heat and Drag Reduction	19
1.5.1 Active Flow Control Methods	19
1.5.2 Combination of Counter flowing jet and forward-facing	19
cavity	
1.5.3 Combination of Counter flowing jet and energy deposition	20
1.5.4 Combination of Counter flowing jet and aerospike	21

1.5.5 Passive Flow Control Methods	21
1.6 Need for a Multidisk Aerospike	22
1.7 Organization of the Thesis	24
Chapter 2: Literature Review	25
Chapter 3: Motivation and objective of Research	47
Chapter 4: Numerical Methodology	50
4.1Computational Fluid Dynamics (CFD)	51
4.2 The Governing Equations	52
4.2.1 The Continuity Equation	52
4.2.2 The Momentum Equation	53
4.2.3 The Energy Equation	56
4.2.4 The Equation of State	58
4.3 Governing Equation in Vector Form	60
4.4 The Average Equation for Turbulent Flow	61
4.4.1 Reynolds Averaged Navier-Stokes Equation	63
4.4.2 Reynolds Continuity Equation	64
4.4.3 Reynolds Momentum Equation	65
4.4.4 Reynolds Energy Equation	66
4.4.5 Conclusion from the Reynolds Equation	68
4.5 Turbulence Modelling	69
4.5.1 Spalart-Allmaras One-Equation Model (SM)	72
4.5.2 Turbulent Viscosity Modeling	73
4.5.3 Turbulent Production Modeling	73
4.5.4 The Turbulent Destruction Modeling	74
4.5.5 Model Constants	75
4.6 Geometric Modeling and Grid Generation	75
4.6.1 Geometric Modeling	76
4.6.2 Geometric Parameter Variation	76
4.6.3 Grid Generation	81
4.7 Solver Setting	84

4.7.1 Scalar Transport Equation and Discretization	85
4.7.2 Algebraic Multigrid Method	87
4.7.3 The Coupled AMG Solver	89
4.7.4 The Gauss Seidel Smoother	90
4.7.5 Spatial Discretization	90
4.7.6 Evaluation of Inviscid Fluxes	91
4.7.7 Temporal Discretization	94
4.7.8 Gradient Evaluation	95
4.8 Boundary Conditions	97
4.9 Mesh Independency Study	99
4.10 Solver Validation	100
Chapter 5: Results and Discussion	102
5.1 Effect of Disk Size on Drag for Single Disk Aerospike	103
5.2 Heat Flux for Blunt body With Single Disk Aerospike	106
5.3 Flow Field around Blunt Body with Double Disk Aerospikes	109
5.4 Effect of Aerodisk Shape for Double Disk Aerospikes	111
5.5 Effect of Double Disk Aerospike on Aerodynamic Drag	113
5.6 Effect of Double Disk Aerospikes on Heat Transfer Rates	121
5.6.1 Heat Transfer Rates for Hemispherical Double Disk	121
Aerospikes	
5.6.2 Heat Transfer Rates for Flat Double Disk Aerospikes	128
5.6.3 Heat transfer rates for Flat Triangular Double Disk Aerospike	135
5.7 Flow field Around Three Disk Aerospikes	137
5.8 Effect of Three-disk Aerospikes on Aerodynamic Drag	145
5.8.1 Drag Reduction for Hemispherical Triple disk Aerospikes	145
5.8.2 Drag Reduction for flat Triple disk Aerospikes	151
5.8.3 Drag Reduction for flat Triangular Triple disk Aerospikes	154
5.9 Effect of Three Disk Aerospikes on Heat Transfer Rates	156
5.10 Comparison between Single, Double and Three Disk Aerospikes	168

Chapter 6: Conclusion and Future Work	176
References	182
Appendix A: Geometries Investigated	191
Appendix B : Publications	196