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CHAPTER 4 

NUMERICAL METHODOLOGY 

History prevails that a major thrust has always been to fly faster and higher, but 

they will be made reality only when computational fluid dynamics will develop to 

a point where the complete three-dimensional flow field over the vehicle can be 

computed rapidly with accuracy and consistency. The ground test facilities do not 

exist for all the flight regimes covered by hypersonic flight and quite expensive if 

available. Simulation of higher Mach number and high temperature flows 

encountered during the trans-atmospheric vehicle are of great challenge. Hence 

the major thrust in designing in designing of these vehicles is computational fluid 

dynamics. Computational fluid dynamics is an associate of theoretical and 

experimental aerodynamics. During early periods 1960, only two approaches 

were used to solve the fluid dynamics problems viz. the theoretical and the 

experimental. However with the development of the high speed digital computers 

and accurate numerical algorithms for solving physical problems has 

revolutionized the way we practice fluid dynamics today. Since computational 

fluid dynamics provides the third approach there will always be a need for theory 

and experiment. As shown in Fig. 4.1, the understanding of fluid dynamics will 

rest upon the proper balance of all the three approaches.  

The results obtain from computational fluid dynamics are directly related to the 

wind tunnel results obtained as both represents the sets of data for a given flow 

configuration at different Mach number and Reynolds number. The data obtained 

from wind tunnel are exact scenario of the real world data which can be easily 

understand and a physical phenomenon happening can be seen. Though the 

experimental simulations give the real world data, which is easy to understand, it 

requires a costly experimental set up and tweaking of the setup for different 
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configurations of the model. Besides this, a wide range of different sophisticated 

instruments like Pitot tube, temperature sensors, anemometers are required to 

observe different parameter. In contrast, the computational fluid dynamic 

approach does not require a physical set up, and can model most physical 

phenomenon and can gather a huge amount of data by just solving the equations 

once. 

 

Fig. 4.1: Fluid Dynamics - Three Dimensions [66] 

4.1. Computational Fluid Dynamics (CFD) 

The analysis of any fluid flow problems are derived from the three basic 

fundamental principles viz., law of conservation of mass, law of conservation of 

momentum and law of conservation of energy. These fundamental physical 

principles can be expressed in terms of mathematical equations, which are in the 

form of either integral or partial differential equations. Computational fluid 

dynamics is the process of replacing the integrals or the partial derivatives 

equations in discretized algebraic forms, which in turns are solved to obtain 

numbers of flowfield values at discrete points in time and or space. The outcome 

is a collection of data, in contrast to a closed-form analytical integral or 

differential solution  
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The basic steps involved are: 

a. Preprocessing 

b. The geometry (physical bounds) of the problem is defined. 

 The volume occupied by the fluid is divided into discrete cells (the 

mesh). The mesh may be uniform or non-uniform. 

 The physical modeling is defined 

 Boundary conditions are defined.  

c. The simulation is started and the equations are solved iteratively as a steady-

state or transient. 

d. Finally a postprocessor is used for the analysis and visualization of the 

resulting solution. 

In the present research the unsteady, compressible, turbulent, axisymmetric 

Reynolds-averaged Navier-Stokes (RANS) equations are solved in order to 

understand the basic fluid dynamics over the spiked blunt body at fixed 

atmospheric conditions using multidisk aerospikes. The governing equations can 

be expressed in different forms and notations depending upon the coordinate 

system and the model of the fluid [67] & [68]. 

4.2. The Governing Equations 

The equations of fluid dynamics are based on the following universal laws of 

conservation viz. Conservation of Mass, Conservation of Momentum and 

Conservation of Energy. In addition to the equations developed from these 

universal laws, it is necessary to establish relationship between fluid properties in 

order to close the system of equations. The equation of state relates the 

thermo

the system of equations. 

4.2.1. The Continuity Equation 

The conservation of mass applied to a fluid passing through a control volume 

fixed in space yields the following equation of continuity: 
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 is the fluid velocity. The first term in the 

equation represent the rate of increase of density and the second term represents 

the rate of mass flux passing out of the control surface per unit volume. 

For a Cartesian coordinate system, where   represent the   component 

of velocity vector, equation (4.1) becomes 

 

The above equation is in the conservation form that is suitable for simulation of 

supersonic and hypersonic flows. 

4.2.2. The Momentum Equation 

 The conservation of the linear momentum for any fixed control volume yields the 

following momentum equation. 

 

In Equation (4.3),    is the time rate of change of momentum per unit 

volume ;  is the net outflow of momentum through the control surfaces;  

represent the body per unit volume and  represent the surface force per unit 

volume where  represent the stress tensor consist of normal and shearing 

stresses. The stress tensor  in equation 4.3 can be expressed as given in 

Equation 4.4. 
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where  is the Kronecker delta function; represent the three 

component of the velocity vector   is the dynamic viscosity and  is the 

second coefficient of viscosity. The dynamic viscosity and the second coefficient 

of viscosity are related to each other via the bulk viscosity , which is given by 

Equation 4.5. 

 

However, is almost negligibly small for Newtonian fluids i.e. with   the 

second coefficient of viscosity yields to Equation (4.6) 

 

The viscous stress tensor thus can be expressed as per Equation 4.7.  

 

Thus, the final momentum equation can be given by Equation (4.8) 

 

 

 

In terms of viscous stress tensor the above equation becomes 

 

 

 

The above equation can be transformed into Cartesian coordinate system into 

three Navier Strokes equations in  direction respectively. 
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The x-component of momentum equation: 

 

 

 

The y-component of momentum equation: 

 

 

 

The z-component of momentum equation: 

 

 

 

These equations can also be re-written in conservative form as given in Equations 

4.11 a, b and c. 

 

The Conservative form of x-component of momentum equation: 

 

 

The Conservative form of y-component of momentum equation: 
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The Conservative form of z-component of momentum equation: 

 

 

 

The elements of the viscous tensor stress  in above equations are given by 

Equations 4.12 (a)  (f) 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3. The Energy Equation  

The first law of thermodynamics viz. conservation of energy states that the rate of 

change of energy equals the sum of rate of heat addition and work done on fluid 

particle. When this is applied to the fluid passing through an infinitesimal volume 
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fixed in space, the energy equation for a viscous hypersonic flow can be obtained 

as given in Equation 4.13, 

 

 

 

where  is the total energy per unit volume of the fluid and is given by Equation 

4.13 a. 

 

 

 

where e is the internal energy per unit mass. In the Equation (4.13), the first term 

on the left side i.e.  , represents the time rate of change of total energy in the 

control volume, while the second term on left hand side  reflects the total 

energy per unit volume lost by convection passing through control surfaces. The 

first term on the right side of Equation 4.13,  represents the rate of heat 

produced per unit volume and the second term  represents the heat lost by 

conduction per unit volume. The heat transfer  by conduction is given by the 

 

 

 

 

where k is the coefficient of thermal conductivity and T is the temperature. The 

third and fourth term on the right hand side of the equation represent the work 

done on the control volume by the body forces and the work done on the control 

volume by the surface forces. Thus Equation (4.13) states that an increase of 

energy in the system equals to the sum of work done on the system and the heat 

addition, which is the first law of thermodynamics. 
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The above equation can be transformed into Cartesian coordinate system as 

follows, 

 

 

 

where,     

    

 

 

4.2.4. The Equation of State 

The compressible viscous flow is represented by the Navier-Stokes equations that 

consist of continuity equation, three momentum equations and energy equation. 

The system contains five equations of six unknown flowfield variables 

( . In aerodynamics, the assumption that air is a perfect gas can be 

applied i.e. it assumes that the intermolecular forces are negligible. For a perfect 

gas, the equation of state is given by Equation (4.17) 

     

 

where  is the gas constant . This provides a sixth equation, and also introduces a 

seventh unknown namely . The seventh equation that closes the entire system is 

the thermodynamic relation between state variables. Therefore additional 
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equations are required in order to establishes the relation between thermodynamic 

property and transport property viz. viscosity ( and thermal conductivity ( ). 

For a calorically perfect gas, the internal energy is related to temperature by the 

equation 

 

 

 

where is the specific heat at constant volume. The coefficient of thermal 

conductivity ( ) and viscosity (  are related to the thermodynamic variable 

under kinetic theory. According t

viscosity are given by Equation (4.19 a) and (4.19b) 

 

 

 

 

 

Where  are constant for a given gas. For air at moderate temperatures the 

values of constants are: 

  ),           

                 ,        

 

The coefficient of thermal conductivity and viscosity are related by a non-

dimensional parameter known as Prandtl number. The Prandtl number (Pr) is 

defined as the ratio of frictional dissipation to the thermal conduction and is 

expressed as per Equation (4.20) 
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The Prandtl number is often used to determine the coefficient of thermal 

conductivity  once  is known, since the ration  is approximately 

constant for most gases. Therefore thermal conductivity  can be analyzed as per 

Equation (4.21) 

 

 

 

4.3. Governing Equations in Vector Form 

The compressible Navier-Stokes equations in Cartesian coordinates are often 

written in a compact vector form as given by Equations 4.22.  This form is 

particularly suited for writing codes and applying similar numerical algorithm to 

all equations in the set.   

 

where U, E, F and G are vectors given by 

 

 

 



61 | P a g e  

 

 

 

 

 

The first term in the vector Equation (4.22) refers to continuity equation as given 

by Equation (4.2), Similarly the second, third and fourth row in the vector 

equation  corresponds to momentum  Equation (4.11a, 4.11b  and 4.11c ), whereas 

the fifth row refers to energy Equation (4.15).  It is easier to write the Navier-

Stokes equation in this form as it is easy to write the desired numerical algorithm. 

4.4. The Averaged Equations for Turbulent Flow 

which the various quantities show a random variation with time and space 

coordinates so that statistically distinct average values  

The unsteady Navier-Stokes equations are considered to govern turbulent flows in 

the continuum regime. Turbulent flow can be solved by the direct numerical 

simulation (DNS), which requires that all the relevant turbulence length scales be 

resolved from the smallest eddies to scales of the order of the physical dimensions 

of the problem. The computation need to be three-dimensional even if the time-
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mean aspect of the flow are two-dimensional, and also the time step must be small 

enough that the small- scale motion can be resolved in a time accurate manner 

even if the flow is steady in a time-mean sense. Such requirement places a large 

demand on the computer resources, to the extent that only relatively simple flows 

at low Reynolds number can be computed directly with present day machines. 

Another approach is the large-eddy simulation (LES) in which the large-scale 

structures of a turbulent flow is computed directly and only the effects of the 

smallest and more nearly isotropic eddies are modelled. This is accomplished by 

-Stokes equation to obtain a set of equation that governs the 

the flow variables over regions approximately equal to the size of the 

computational control volume cells. The computational efforts required for LES is 

less than that of DNS. 

The main thrust of present day research in computational fluid mechanics and 

heat transfer in turbulent flows is through the time- averaged Navier stokes 

equations. These equations are also referred to the Reynolds equations of motion 

or Reynolds averaged Navier-Stokes (RANS) equations. Time averaging of the 

equations of motion gives rise to new terms, which can be interpreted as 

motion. These new quantitates must be related to the mean flow variables through 

turbulence models. Thus this approach on the turbulent flow problem through 

solving the Reynolds equations of motion does not follow entirely from first 

equations. 

The Reynolds equations are derived by decomposing the dependent variables in 

the conservation equations into time-mean and fluctuating components and then 

time averaging the entire equation. Two type of averaging are presently used, the 
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classical Reynolds averaging and the mass weighted averaging of which Reynolds 

averaging is primarily used. 

4.4.1. Reynolds Averaged Navier-Stokes Equation 

The time averaging quantity   can be defined as per Equation (4.23) 

 

The randomly changing flow variables can be replaced by time averages and 

fluctuations in flow filed as shown in Fig. 4.2. Therefore for a 

Cartesian coordinate system, we can now write the following fluid properties as 

per Equation (4.24) 

 

 

 

Fig. 4.2: Relation between  

By definition the time average of the fluctuating quantity is zero: 
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The mass averaged variables for the compressible flow is defined as per Equation 

4.26. 

 

The flow filed variables are mass- averages and thus given by Equations 4.27. 

 

Substituting these into the conservation equations, the new fluctuating quantities 

are defines as   

                                   4.28 

The time average of a double primed fluctuation multiplied by the density is equal 

to zero as shown in Equation (3.29) 

   

4.4.2. Reynolds Continuity Equation  

The Reynolds form of the continuity equation in time averaged variables can be 

expressed as per Equation 4.30. 

Further substituting the mass-weighted averaged variables and the double primed 

functions, as expressed in Equation 4.28, into Equation 4.2 the Equation obtained 

in time averaging yields to Equation 4.31. 
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This equation is equal to zero as per Equation 4.29 and therefore the continuity 

equation in mass-weighted variables can be written as Equation 4.32. 

 

4.4.3. Reynolds Momentum Equation  

The momentum equations given in Equation 4.11 can be converted to time 

averaged Reynolds momentum equations by replacing the dependent variable 

using Equation 4.24. The time averaged - component of the momentum equation 

after neglecting the body forces can be written as Equation 4.33. 

 

The complete time averaged Reynolds momentum equation for all the three 

components can be written in tensor notation as Equation 4.34. 

 

where, 
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The Reynolds - component of momentum equation in mass-weighted variables 

using decomposition variables as per Equation 4.28 becomes Equation 4.36. 

 

The complete Reynolds momentum equation in mass weighted variable for all the 

three components yields to Equation 4.37. 

 

where 

 

4.4.4. Reynolds Energy Equation  

Considering that the total energy composed of only internal energy and kinetic 

energy and re-writing the Equation (4.13) by replacing  with ), the 

equation in summation notation becomes 

 

Utilizing the static temperature as the dependent variable in the energy equation 

and replacing it with the decomposition form as given in Equation 4.24, the 
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resulting equation obtained is in time averaged form as expressed in Equation 

(4.40) 

 

where    

The Reynolds energy equation in mass-weighted variables can be obtained by 

using the fluctuation quantities illustrated in Equation 4.28 and averaging over 

time. The mass-weighted energy equation can thus be written as Equation 4.42. 

 

The  in above equation can be evaluated using Equation 4.38. The Reynolds 

energy equation in terms of mass-weighted variable using static temperature then 

can be given by Equation 4.43. 

 

 

where 
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4.4.5. Conclusion from the Reynolds Equation  

In turbulent flows, categorizing the terms according to the acceleration of the 

mean motion and actual stresses becomes more of a challenge. Using regular 

averaging, the presence of the terms like  results in the flux of momentum 

across mean flow streamlines. Further the use of mass-weighted averaging 

eliminates the   terms and provides an expression for particle acceleration but 

complicate the separation of stresses into purely laminar and apparent turbulent 

categories. In time average, the fluctuating component of vanishes. The 

momentum Equation 4.34 can be rearranged in substantial derivative as follows in 

Equation 4.45. 

 

The first on the left hand side is the particle acceleration of mean motion, the first 

term on the right hand side is the mean pressure gradient, while the second term 

represents the laminar stress gradient for the mean flow, the last term expresses 

the apparent stress gradient due to transport of momentum by turbulent 

fluctuations and deformations attributed to fluctuations. 

In Equation 4.45, 

  

and  
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Since the viscosity fluctuations have been neglected in analyzing Equation 4.45, 

the third term in the equation  involves the molecular viscosity.  

-

 

 

And the apparent Reynolds turbulent heat flux is expressed as per Equation 4.46 

b. 

 

The Reynolds equations therefore cannot be solved in the above form as the new 

heat flux quantitates and turbulent apparent stresses can be viewed as new 

unknowns. Therefore we need additional equations that relate the apparent 

turbulent quantities and the time-mean flow variables to close the problem which 

can be done through turbulence modeling. 

4.5. Turbulence Modeling 

Turbulence plays an important role in defining the aerodynamic forces and 

heating for hypersonic vehicles. Due to the extremely high speed in hypersonic 

flows, the experimental tests have discrepancies with the similar freestream 

enthalpy levels typical of hypersonic flight. The authentication of turbulence 

models with wind tunnel data thus generally involves substantial extrapolation to 

flight data. For this reason, the difficulties in attaining validation data for 

turbulent, hypersonic flows, designers are forced to rely heavily on associated 

models for turbulence and computational fluid dynamics. 
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Turbulence modeling therefore plays an important role while performing 

Reynolds Averaged Navier-Stokes equations (RANS) simulations. Since turbulent 

flows are present in many hypersonic applications and the phenomenon such as 

shock wave boundary layer interaction and boundary layer separation depends 

strongly on the superior choice of turbulent model. As per Boussinesq assumption 

(1877), the apparent turbulent shearing stresses can be related to the rate of mean 

strain through an eddy viscosity. For a Reynolds stress the Boussinesq assumption 

gives,  

 

where  is the turbulent viscosity,  is the kinetic energy of turbulence 

 

To close the Reynolds Averaged Navier Stokes equations, the Boussinesq 

assumption were applied that are normally referred to as category I or turbulent 

viscosity also referred to as first-order model. Experimental evidence reveals that 

turbulent viscosity hypothesis is valid in most of the flow conditions. Models 

without Boussinesq assumption are referred to as category II models and include 

terms those known as stress equation model. These stress equations are referred as 

second order closure. The other classification of models is according to the 

supplementary partial differential equations, which are to be solved in order to 

supply the modeling parameters. These numbers range from 0 for the simplest 

algebraic model to 12 for the most complex of Reynolds stress models as 

illustrated by Donaldson and Rosenbaum(1968)[67]. 

The third category model is defined as those which are not entirely based on 

Reynolds equations, such as large eddy simulations (LES). So a set of modified 

conservation equations is solved instead of Reynolds equation. Since the present 
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research to investigate the aerodynamic characteristics of a hypersonic vehicle 

with a forward facing aerospike at high Reynolds number, flow is assumed to be 

turbulent and an appropriate model needs to be implemented. Number of 

investigation and research has been done to suggest the appropriate turbulent 

model which can best fit for hypersonic flow [71] [72]. The appropriate model 

should be cheap, robust and should require minimum commuter time and storage, 

without compromising the accuracy the solution. Two of the most popular and 

reliable turbulence models for hypersonic flows are the one Equation Spalart-

Allmaras Model (eddy viscosity transport model) [73-74] and the two equation k-

 models viz. the Wilcox k-  model and Menter Shear Stress Transport model k-

regime and can be found in literature [75-78]. 

The Spalart Allmaras one equation model solves a transport equation for 

modified eddy viscosity near the wall. This is based on the assumption that the 

Reynold stress tensor (  is related to the mean strain rate through an 

apparent turbulent viscosity called eddy viscosity  through Equation 4.49 [73] 

[74]. 

 

 

The accuracy and estimations with Spalart-Allmaras model are insensitive to the 

spacing at the wall relative to the two-equation models, atleast for hypersonic 

flow [78]. The Spalart-Allmaras model has a good accuracy and shows robustness 

for attached flow. Despite the fact that it is stable for large values of , the 

maximum for accurate solutions should be roughly  The Wilcox 1988 k-

model is normally better than the k- -bounded flows, particularly 

in the presence of adverse pressure gradient. It is recommended that the  

values at the wall be kept well below one. The problem with Wilcox k- 
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[71 k-

k- k-

in shear layers and a freestream and yields good results for a wide range of flows 

[77]. In this the turbulent viscosity is redefined to account for the transport of the 

turbulent shear stress. With the above reasons, it is seen that for aerospace 

applications the Spalart-Allmaras a one-equation model is designed especially for 

aerospace and takes kinematic eddy i.e. a turbulent viscosity into account. An 

aerospace application involves wall-bounded flows and one equation model 

Spalart-Allmaras gives acceptable results for boundary layers subject to adverse 

pressure gradient. Therefore in the present research the Spalart-Allmaras one 

equation model is chosen to model the effect of turbulence. 

4.5.1. The Spalart  Allmaras (SA) Model  

The Spalart-Allmaras model is a good compromise between algebraic and two-

equation turbulence models. In general the SA model directly solves the transport 

equation for eddy viscosity, and it has become quite popular because of its 

compatibility with wide range of flow problems and numerical techniques [73] & 

[74]. The transport variable in the SA model , which is identical to the turbulent 

kinetic viscosity except near walls where viscous affect are dominates. The 

governing transport equation for turbulent kinematic viscosity  is given by 

Equation 4.50.  

 

 

 

In above equation, the term  is represents the production of turbulent viscosity 

and  represents the destruction of turbulent viscosity which occur near the wall 

region due to viscous damping and wall blocking. The term  is the molecular 
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kinematic viscosity and  and  are constants. is a user-defined source term 

in Equation 4.50. 

4.5.2. Turbulent Viscosity Modeling 

The computation of turbulent kinematic viscosity  leads to the calculation of the 

turbulent viscosity  through Equation 4.51. 

 

 

 

The viscosity damping function in Equation 4.51 is expressed as 

 

where,   

   

 

 

4.5.3. Turbulent Production Modeling  

The production of turbulent viscosity term,  in Equation 4.51 is expressed as 

 

 

where 

 

and 
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The term  and  are constants, the distance from the wall is  , and  is the 

deformation tensor and is based on the magnitude of the vorticity and is expressed 

as Equation 4.57. 

 

 

where the  term  represent the mean rate-of-rotation tensor and is defined by 

Equation 4.58. 

 

However, in the current simulations an alternative formulation of the SA model 

that takes both vorticity and the strain based productions of turbulence into 

account is considered as given by Equation 4.59 [79].  

 

 min 4.59 

where 

 

  ,      =  ,    

 

The mean strain rate  is defined as 

 

 

This includes both strain tensors and rotations which reduces the production of 

eddy viscosity in regions where the measure of vorticity surpasses that of strain 

rate. 

4.5.4. The Turbulent Destruction Modeling 

The destruction term in the SA model is modeled as 
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where  

 

with 

 

and 

 

In above equations, , , and  are constants and is given by Equation 

(4.61). This modification includes the effect of mean strain on . 

4.5.5. Model Constants 

The model constants that appear in Equations 4.52-4.62, viz. , ,  , ,  

,  ,  , and,  have been given  following values in this simulation, as 

given by Equation 4.63. 

,  ,  ,    

 

4.6. Geometric Modeling and Grid Generation 

Geometric modeling and grid generation play a vital role in the field of numerical 

simulation of fluid dynamic systems. The solution of any problems is defined at 
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nodes inside the cell and the accuracy of the computational techniques is 

governed by the numbers of cells in the grid. Both the accuracy of a solution and 

its cost in terms of hardware and calculation time depend on the fineness of the 

grid. Optimal meshes are often non-uniform, finer in areas where large variations 

occur from point to point and coarser in regions with relatively little change.  

4.6.1. Geometric Modeling 

In the present investigation all the geometries are constructed using commercially 

available software Gambit. Gambit is a geometry and mesh generating software 

from ANSYS. Gambit is single interface for geometry creation and meshing that 

brings together most of the computational pre-processor techniques in one 

environment.  The base configuration selected for studying the effect of 

aerospikes is a popularly investigated hemisphere cylinder with a base diameter 

40 mm [55]. The axisymmetric hemisphere cylinder has length of 1.25D where D 

is the base diameter, as shown in Fig. 4.3.The subsequent models have aerospikes 

of various lengths and design, protruding from the stagnation point of the 

hemisphere cylinder as shown in Figs. 4.4, 4.5 and 4.6. Three types of aerodisks, 

viz., hemispherical aerodisk, flat triangular aerodisk and flat aerodisk have been 

investigated. The diameter of the aerospike stem for configuration is fixed at 

0.1D, where D is the diameter of the base body. The overall spike lengths l of 

1.0D, 1.5D, 2.0D and 2.5D were investigated in the present research with the radii 

disk varied between 0.05D, 0.1D, 0.15D and 0.2D.   

4.6.2. Geometric Parameter Variations 

Three important parameters viz. the l/D ratio, the radii of the aerodisks and the 

internal position of the intermediate disks on the spike, are identified for their 

effects on the aerodynamic drag and heat fluxes. The l/D ratio is varied from 1 to 

2.5 for all the aerodisks configurations. The l/D ratio is varied from 1 to 2.5 

because of practical applicability of these lengths based on extensive literature 

review. Most of the paper available in published literature reports the effect of l/D 

ratios, but the effect of aerodisk size is not studied. It is obvious that size of 
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aerodisk significantly modifies the flow field ahead of the blunt body and hence 

affects the aerodynamic parameters. Keeping this in view the radii of the front 

aerodisk is varied from 0.05D to 0.2D, keeping other geometric parameters fixed. 

The radii of intermediate aerodisk are bigger in size from the upwind aerodisk by 

an amount of 0.05D (2mm). The current research elaborates the effectiveness of 

multidisk aerospikes, thus for a given l/D ratio and size of the front aerodisks, the 

intermediate location of the rearward aerodisk can have a significant effect on the 

flow field ahead of the blunt body. So the third parameter of interest investigated 

in this research is the intermediate positioning of the rearward aerodisk. For the 

two disk aerospikes of given l/D ratio, the intermediate disk is placed at either 

0.25l, 0.5l or 0.75l with l as the length aerospike. For the three disk aerospike, for 

a given positions of rear aerodisk, the intermediate disk is positioned at 0.25, 0.5 

or 0.75 of the distance between the front and the rear disks, the rear disk position 

also being varied as with the two disk case. All the parameters have been varied 

for three different shapes of aerodisk viz. hemispherical aerodisk, flat triangular 

aerodisk and flat aerodisk.  Combining the variations of all the above set 

geometric parameters, the various geometric configurations that have been 

identified for numerical simulations are listed in the Appendix A. 

 

 

Fig. 4.3: Base geometry 
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(a) Single Aerodisk 

(b) Double Aerodisk 

(c) Triple Aerodisk 

Fig.4.4: Hemispherical Aerodisks 
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 (a)  Single Aerodisk 

 

 (b) Double Aerodisk 

 

 (c) Triple Aerodisk 

Fig.4.5: Flat Aerodisk 
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(a) Single Aerodisk. 

 

 (b) Double disk. 

 

(c) Triple Aerodisk. 

Fig.4.6:  Flat Triangular Aerodisk 
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4.6.3. Grid Generation  

To solve the partial differential equations the domain has to be discretized i.e. 

divided into a number of cells where the solution can be represented. Numerical 

solutions are often represented as a point value to find the fluid properties at a 

local grid points or as the average of the quantities over one cell as shown in Fig. 

4.7.  

 
Fig. 4.7:  Cell centers and grid points 

 

The partial differential equations are integrated over the discretized domain using 

finite volume techniques to yield solutions at the grid points. Two different types 

of approaches are normally used to discretized a complex geometry viz. structured 

grid and unstructured grid as shown in Fig. 4.8. Structured grid generation 

methods rely on regular array of quadrilateral or hexahedral cells in two or three 

dimensions respectively; on the other hand the unstructured grid methods 

originally emerged as a viable alternative to the structure grid techniques for 

discretizing complex geometry. These methods make use of either collection 

simplicial elements or an element of mix type with irregular connectivity. This 

provides for greater flexibility for discretizing complex domain but lacks 

straightforward implementation of adaptive meshing techniques [80]. In the 

present research, a hybrid mesh is generated for the base body and for the 
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different aerospike varying l/D ratios, which has highly structured mesh in the 

boundary layers and an unstructured mesh at complex corners. 

  
(a) Structured Grid                 (b) Unstructured Grid 

Fig. 4.8: Types of grids 

 

The initial mesh generated for the base body has a total cell of 50,000 

quadrilaterals with the distance of the first cell from the body is 1e-06 m, such 

that the non-dimensional wall distance at the body is  1 for turbulent 

computation. A total of 20 rows structured grid was generated near the wall of the 

model stretched in the radial direction with a growth factor of 1.2, such that the 

grid near the wall is dense enough to resolve the viscous stresses. For all the mesh 

generated outside the prismatic boundary layer paving techniques has been used 

to generate the all quadrilateral meshes, which allows varying element size 

distribution on the boundary as well as the interior region. In this the mesh 

contour tends to follow geometric contours of the boundary. The paving 

techniques tend to place well-formed elements along the boundary with irregular 

nodes in the interior of the geometry [81]. A sizing function with start size of 0.1 

mm has been applied which results in gradual increase in the size of quadrilateral 

as we travel away from the solid boundary. The smallest quadrilaterals adjacent to 

the prismatic boundary layer are of size 0.1 mm x 0.1 mm and largest 

quadrilaterals near the farfield are 2mm x 2mm in area. With the addition of the 

single aerodisk, double aerodisk and triple aerodisk of various geometries, 

protruding from the stagnation point of the nose of the base bodies, the cell count 

subsequent geometry varied from 60,000 to 90,000 in number. The initial meshes 

for the base configuration and configurations with hemispherical aerodisks are 
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shown in Fig. 4.9. These initial meshes were adapted a number of times during 

the course of solution in the regions of high gradients of pressures and 

temperature such that the final count of cells reached up to 200,000 in all cases as 

shown in Fig. 4.10. The refinement of meshes were stopped beyond 200,000 cells 

are the solutions were found to be grid independent with these numbers.  

 

 

       
(a) Base body                      (b) Single disk spike  

 

 

      
(c) Double disk aerospike                               (d) Three disk aerospike. 

 

Fig. 4.9: Initial Meshes around Hemispherical Aerodisks 
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(a) Base body             (b)  Single disk Aerospike 

 

 
(c) Double disk Aerospike                               (d) Three disk Aerospike. 

Fig. 4.10: Adapted Meshes around Hemispherical aerodisks 

 

4.7. Solver Setting 

The CFD software used in the investigation offers both the pressure and density 

based solvers. Since the present research deals with highly compressible flows at 

hypersonic speeds, a destiny-based solver is be used. In this, the density field is 

obtained from the continuity equation and the velocity field from the momentum 

equation in a coupled manner. The non-linear and coupled governing equations 

are solved iteratively using control volume based techniques till converged 

solutions are obtained.  
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The non-linear governing equations are linearized to obtain a system of equations 

for the dependent variables in every computational cell. The resultant linear 

coupled systems of governing equations are then solved to give an updated flow-

filed solution using implicit formulation. In this the unknown value in each cell is 

computed using a relation that includes both current and unidentified values from 

adjacent cells. Each equation in the coupled form is linearized implicitly with 

respect to all dependent variables in the set. This results result in a system of  

linear equations in each cells in the domain, where  is the number of coupled 

implicit approach solves all the variables (  in all cells at the 

same time. 

4.7.1. Scalar Transport Equation and Discretization 

Discretization is the process of transforming the continuous function and 

equations into discrete counterparts. The Fluent code uses a finite volume 

approach to transform the general scalar transport equation into algebraic equation 

which can be solved numerically. The transport equation is integrated about each 

control volume, which results in discrete equation, and can be expressed as the 

conservation law on a control-volume. For an arbitrary control volume , the 

unsteady conservation equation for the scalar transport quantity   can be 

expressed as   

  

where is the density,  is velocity vector,  is surface area vector,  diffusion 

coefficient of   is the gradient of  and  is the source of  per unit volume. 

Equation 4.64, when applied to each cell in the computational domain as shown in 

Fig. 4.12, results in discrete algebraic equation 4.65.  
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Fig. 4.11: Discretization of a Transport Equation over a Finite Control Volume 

where 

 = number of faces enclosing cell 

  = value of  convected through face f 

  f 

   = area of the face f 

 = the gradient of  at face f, and  

 = cell volume. 

 

Equation 4.65 readily applies to multi-dimensional, unstructured meshes and 

contains an unknown variable  at the cell center and also at the neighboring 

surrounding cells. Therefore, it is in non-linear with respect to these variables and 

the linearized form of these equations can be written as  
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where  and  are the linearized coefficient for  and the subscript  refers 

to the neighbor cells. Equation 4.66 is written for each cell in the mesh, which 

yields to a set of algebraic equations. This linear system of equations is solved 

iteratively using a point implicit solver in conjunction with an Algebraic 

Multigrid (AMG) method. 

4.7.2. Algebraic Multigrid Method 

Multigrid methods are used in the CFD simulation to speed up the convergence of 

the solver by calculating the corrections on a coarse grid levels. This scheme 

significantly reduces the number of iterations and the processing time required to 

attain the converged solution. In this method, the low frequency error or the 

global error which exist on the fine mesh can be represented on a coarser mesh 

where it again becomes accessible  as high frequency or local error, because of 

the lesser coarse cell, the global correction can lead to more speedily between 

adjacent cells. Since the computation on a coarser mesh is performed at a lesser 

expense in both memory storage and CPU time, it leads to the elimination of the 

global error at a very fast rate. The basic concept of multigrid can be expressed by 

considering a set of linearized equations given by 4.73. 

 

 

 

 where  is the exact solution.  Before the convergence is achieved, a defect d 

exists with the approximate solution , such that 

 

 

 

For obtaining the exact solution, a correction of  should be applied to  which 

can be given by Equation 4.69. 
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Substituting this in Equation (4.67), yields to Equation (4.70) or (4.71) 

 

 

or 

 

 

 

Equation (4.68) and (4.70) can be combined to obtain 

 

 

Equation 4.72 is the equation for the correction in the defect,  solved on the fine 

mesh. The high frequency errors or local errors are damped by the relaxation 

scheme; the correction   is then smoothened and solved more effectively on the 

coarser mesh. The multigrid approach has two basic steps viz., restriction and 

prolongation. Transferring the defect from fine mesh to coarse mesh is referred as 

restriction, while transferring of correction from coarser mesh back to finer mesh 

is termed as prolongation. 

The coarse level correction  is expressed as  

  

where  is the restriction operator which transfer the finer meshes to defect down 

the coarse meshes and  is the coarse mesh operator. The new fine level solution 

is then given by Equation 4.74. 

 

4.74 
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where  is the prolonged operator, which transfer coarser level correction to the 

finer level. 

In the Algebraic Multigrid Method the coarse level equations are solved without 

the use of any re-discretization or geometry at the coarser levels. Because of this 

feature, AMG is best fit for unstructured meshes. The benefit of AMG is that no 

coarse meshes have to be stored or constructed and no flux terms need to be 

calculated at coarse level. Once the equations are linearized, non-linearity is not 

sensed by the solver till the fine level operator is updated. 

4.7.3. The Coupled AMG Solver  

The linear system is obtained from the discretization of the transport equations 

and can be written as Equation 4.75. 

 

 

For a density based solver that uses coupled algebraic multigrid solver with an 

implicit discretization of the coupled system the resultant system can be expressed 

as Equation 4.76. 

 

where, 

 

 

In Equations 4.76,  is the unknown vector and  is the source vector. The 

above system of linear equations is solved by the Gauss-Seidel smoother. 
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4.7.4. The Gauss Seidel Smoother 

The Gauss-Seidel method solves the equations one at a time and in sequence. In 

this the previously computed results are used as soon as they are available. It 

makes two sweeps of unknown in forward and in backward directions. The 

current code uses both block and point Gauss-Seidel smoother for solving systems 

of equations for the AMG method. 

Using the scalar Equation (4.75), the Gauss-Seidel technique can be described. 

The forward sweep is expressed as per Equation 4.77. 

 

 

where  is the number of unknowns. The forward sweep is followed by a 

backward sweep and can be expressed as per Equation 4.78. 

 

 

From Equations 4.77 and 4.78, the Gauss-Seidel method can be written in matrix 

form as a two stage recursive solution procedure given by Equation 4.79. 

 

 

where ,   and represents diagonal, upper triangular and lower triangular 

array of matrix respectively. 

4.7.5. Spatial Discretization 

In the CFD solver used, the values of the primitive variables are stored at the 

cell centers that are also the computational nodes. The face value  for the 

convection term expressed in equation (4.65) must be interpolated from the cell 
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center value. This is usually done using an upwind scheme for a convection 

dominated problem as the current case is. In this the face value  is derived from 

. In the present 

research a second-order upwind scheme has been used because flow filed 

variables are solved using multidimensional linear reconstruction approaches 

which are best described for unstructured meshes [82]. 

In the second-order upwind scheme the face value  is computed as per 

Equation (4.80) 

 

        

 

where     and  are the gradient and cell-centered value in the upstream cell, 

and    is the displacement vector from upstream cell centroid to the face 

centroid. 

4.7.6. Evaluation of Inviscid Fluxes 

Maximizing both accuracy and efficiency are the primary importance of any 

algorithm in numerical analysis. Since the numerical behaviour of the viscous and 

inviscid fluxes is entirely different, it is quite common to split the viscous and 

inviscid fluxes and discretize them separately through established flux vector 

splitting schemes [83 to 91]. Liou and Van Leer tested three techniques viz. the 

Steger-Warming (SWS), Van Leer (VLS) and Roe-Splitting (RS) for variety of 

problems regarding their accuracy and efficiency [88]. Flux vector splitting (FVS) 

such as VLS and SWS have proved to be a simple and useful technique for 

arriving at upwind differencing and is preeminently suited for use in implicit 

schemes. Unfortunately, the simplicity of these two splitting comes at a price of 

reduced accuracy due to numerical diffusion. Flux difference splitting  (FDS) 

such as Roe-

very accurate and particularly well suited for explicit upwind formulations, 

Nevertheless, the increased accuracy is accomplished with an increased operation 
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count and complexity  in arriving  at the complete linearization of flux formulas 

for the implicit schemes. Hence, the simplicity of FVS is still motivating 

researchers to investigate new ways of splitting and combination of FVS and FDS 

that do away with the problem of numerical diffusion with only a small increase 

in complexity. A new flux splitting scheme viz. the Advection Upstream Splitting 

Method (AUSM) was proposed by Liou, which is remarkably simple and accurate 

scheme does not involve differentiation of fluxes-Jacobian matrix and hence it is 

not subject to the difficulty arising from the differentiation. Specifically the 

pressure derivatives, with respect to density and internal energy do not explicitly 

appear in the flux formulas. This scheme has an advantage of both flux vector and 

flux difference splitting [89]. 

This scheme is the modified version of the upwind concept introduced by Liou 

and Steffen. This scheme defines the cell interface Mach number with the 

neighboring cell based on characteristic speeds. The inviscid fluxes are defined by 

the upwind extrapolation of interface Mach number. A modified upwind splitting 

method for pressure splitting function and generalized Mach number is described 

by Liou [89], [90] & [91] and is termed as AUSM+. In this the flux is split into 

two separate distinct parts so that they may be suitably upwind stenciled. The 

flux-function, w), can be written as the sum of convective flux Fc and a 

pressure flux P as given by Equation 4.81 

 

where 

   and    
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Here   is the Mach number and  the speed of sound, . The advantage 

of AUSM+ scheme is that Jacobian matrix is not required to be calculated.  In this 

scheme the flux function is expressed as  

  

where  is the interface quantity of Mach number, which is expressed as 

Equation 4.84 

 

with 

 

The numerical approximation of the speed of sound at the cell interface is done 

using Equation 4.86 

 

The Mach number at the computational nodes is approximated using Equation 

4.87. 

  

 and the pressure term at the cell interface is approximated as 
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where 

 

The value of  and  used in Equations 4.85 and 4.89, as suggested by Liou [91] 

are 

 

The AUSM+ scheme has shown a numerous desirable properties as it gives the 

exact resolution of the shock discontinuity, and is free of oscillations at moving 

and stationary shocks. 

4.7.7. Temporal Discretization 

For the transient cases the governing equation is discretize both in time and space. 

Although the current research presents the steady state results, it is a general 

practice to obtain the steady state solution using time marching approach wherein 

unsteady equations are solved. The temporal discretization includes the 

integration of time derivative term in the differential equations over the time step 

   

The time derivative of a transport of a variable  is expressed as 

 

where the F represents an appropriate function for any spatial discretization. If the 

first order temporal discretization is done using forward difference, then the 

temporal discretization is expressed as 
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Since the explicit time stepping is subject to stability constraints, an implicit time 

stepping is often used for steady state solutions as time accuracy is not that 

important. In Implicit time integration, the time derivative is discretized as per 

Equation 4.92 with   evaluated at the future time level. 

 

 

The above equation is solved iteratively at each time step before moving it into 

next step.  The advantages of implicit scheme are that it is unconditional stable 

with respect to time step size. 

4.7.8. Gradients Evaluations 

 To compute the secondary velocity derivatives and diffusion terms, gradients are 

required.  The convection and diffusion terms are discretized using the gradient 

 for a given variable  in the flow conservation equation. In the present 

research the Least Square Cell-Based gradient method has been used, in which the 

solution is assumed to vary linearly. The change in the cell value between the 

centroids of cell  and  along the direction vector ri, as shown in Fig. 4.13, can 

be expressed as  

 

 = 4.91 

where  is the cell gradient. Similar equations are written for each cell 

surrounding the cell c0, in order to obtain a system of equations given by Equation 

4.92 
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Fig. 4.12: Evaluation of Gradient at Cell Centroid 

where [J] is the coefficient matrix that is purely a function of geometry. The 

above system is solved through minimization problem of non-square coefficient 

matrix in a least square sense. This system of linear equation is solved by using 

Gram-Schmidt process [92] i.e. by decomposing the coefficient matrix. This 

Scheme is used for computing implicit upwind algorithm mainly for unstructured 

meshes. The above equation yields a matrix of weight in each cell. Thus for the 

cell centered scheme three component of weights are produced for each faces of 

cell  

Therefore gradient at cell centered is expressed as the weight fraction multiply by 

the difference vector given by Equation 4.93.  

 =  

The components of the gradient vector are thus given by Equations 4.94-4.96. 
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The accuracy of a least square gradient method on skewed and distorted i.e. 

unstructured meshes is comparable to node based gradient. Also for computation 

the least square gradient is less expensive than node based gradient method. 

4.8. Boundary Conditions 

The most crucial aspect numerical simulation is the designation of its boundary 

conditions which directs the solution toward correct values in an iterative 

procedure. In the present research flow around 2-dimansional axisymmetric 

geometric configurations at zero angle of attack has been investigated. Owing a 

small domain of dependence for hypersonic flows, the upstream boundary is kept 

at 0.5D ahead of the stagnation point while the radial boundaries are present as 

2.5D to capture the shock waves properly. The downstream boundary is a 

characteristic based supersonic outflow boundary and hence not extended beyond 

the body as can be seen in Fig. 4.14. As shown in Fig. 4.14, the inlet and the 

outlet boundaries are designated as pressure farfield wherein the freestream Mach 

number and static conditions at a distance from the body are specified. 

At the outflow boundary also a pressure farfield type boundary has been 

designated. However no variable specification is required as this being a 

supersonic outflow, all variables are extrapolated from the interior of the domain. 

The surface of the models are defined to be isothermal wall at a temperature of Tw 

=300K for all investigated geometries. This specification leads to the computation 
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of surface heat fluxes as a part of the solution. Also a no slip wall conditions, i.e. 

, was applied to the viscous surface of the models. In order to 

simulate the three dimensional effects at zero degrees angle of attack the line of 

symmetry has be assigned an axis type boundary condition across which the 

flowfield gradients are zero. This selection makes the numerical simulation 

slightly quicker because no extrapolation is necessary. 

 

Fig. 4.13: Numerical Boundaries around a Spiked Configuration  

A faster convergence can be achieved, and thus a shorter computation time, when 

the initial conditions are chosen as close as possible to the final steady state 

values. For high speed flow the definition of freestream values as the initial guess 

provides very good first approximation of the solution. Hence the freestream 

values at the pressure farfield boundaries as given in Table 4.1 are also used as the 

initial conditions in all the cells. Based on the freestream values and the base 

diameter the Reynold number for present computation is , which is 

high enough to consider the recirculating flows to be fully turbulent, so the effect 
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of turbulent flow also taken into account by considering suitable turbulence model 

[73] [74] & [76]. The freestream turbulence level based on extensive literature is 

specified with a value of turbulent viscosity ratio to be 2. 

Table 4.1: Freestream and Initial Conditions 

 Symbol Units Values 

Mach number M - 6.2 

Temperature T K 216.65 

Pressure P N/m2 16066 

Molecular viscosity µ Kg/m-s 1.785×10-5 

Unit Reynolds 

number 

Re m-1 

2.64X107 

 

4.9. Mesh Independency Study 

A grid independence study has been carried out for an arbitrarily selected 

hemispherical three disk aerospike. The surface pressure distribution for various 

mesh refinement levels for the above geometry is shown in Fig. 4.15.  As can be 

seen in Fig. 4.15, only the peak reattachment pressure seems to vary as the grid is 

refined from the starting mesh which has approximately 48,000 cells. But as the 

number of cells is increased beyond 83511 up to 143765 cells, the surface 

pressure at all locations almost remains the same. That means the surface pressure 

and thus the drag and aerodynamic heating for the meshes with 83511, 112980, 

126384 and 143765 are almost same. Hence the solution can be assumed to be 

grid independent for cell count of 83,511 and beyond. Nevertheless, all 

computations have done with a minimum cell count of 150,000 and going up to 

200,000 after adaptive refinement. 
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Fig. 4.14: Surface pressure distribution for various grid refinements 

 

4.10. Solver Validation 

Computational Fluid Dynamics is a complementary approach to study fluid 

dynamics and should be supported by either experimental or analytical 

evaluations. The methodology and the techniques used in must be validated 

against benchmark experimental value. A solver validation study has been 

conducted for a sharped edged hemispherical spike against the experimental data 

available in open literature [19]. The geometrical model considered for the 

validation experimental data is a 29.718 mm diameter hemisphere-cylinder with a 

sharp tip aerospike of l/D ratio equal to 1 for a freestream Reynolds number of 1.2 

x 106 and Mach number of 6.8. The computed normalized heat fluxes obtained by 

the solution of axisymmetric Navier Stokes equations show a strong agreement 

with the experimental values as can be seen in Fig. 4.16. As can be seen in Fig. 

4.16, the normalized heat fluxes at different radial locations on the surface differ 

from the experimental values by less than 10%. Apart from the surface heat flux 

distribution the drag values for hemispherical blunt body with and without 

aerodisks for an l/D of 1 is also compared to the available experimental values. 
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 Fig.4.15: Heat flux distributions for spiked hemisphere cylinder [19] 
 
Table 4.2 compares the drag coefficient obtained with the currents numerical 

setup with the experimental results available in literature [53, 54]. A small 

amount of difference in the values of drag coefficient seen is probably 

because of the fact that the simulations are done with fully turbulent 

assumptions while the experiments done in laminar environment. 

  
Table 4.2: Comparisons of Drag coefficients [53, 54] 

 Blunt 

body 

Hemispherical 

aerodisk   

l/D=1 

Hemispherical 

aerodisk 

 l/D=1.5 

Hemispherical 

aerodisk 

l/D=2.0 

Experimental 0.90 0.38 0.275 0.225 

Numerical 0.91 0.37 0.320 0.280 

 

Thus it can be assumed that the current solver FLUENT provide reasonably 

accurate results for the techniques adopted in the research. These results are also 

in consistent with the results obtained by Yadav and Guven [64]. This suggests 

that the Numerical methodology adopted in the current research is an acceptable 

one for meaningful insights into the flow analysis of complex hypersonic flows. 


