LIST OF FIGURES

Figure No.	Title	Page
Figure 1.1	CO_2 emissions in selected regions of the world in 2015	2
Figure 1.2	Projected biofuel production in major ethanol producing countries in the world	5
Figure 1.3	Primary energy demand in India by fuel type and related	6
1 15010 1.5	CO_2 emissions	Ū
Figure 1.4	Ethanol demand with blending targets (%) in India	7
Figure 1.5	Layout of thesis	13
Figure 3.1	Typical life cycle of product/process	34
Figure 3.2	Life cycle assessment framework	36
Figure 3.3	Environmental impact categories used in LCA studies	42
Figure 3.4	General research methodology used in thesis	44
Figure 4.1	Top 10 sugarcane producing states of India	48
Figure 4.2	Sugar factory locations in (a) Maharashtra and (b) Uttar	49
E	Pradesh, India	50
Figure 4.3	System boundaries for 1G fuel ethanol production in India	52
Figure 4.4	Photographs of the sugarcane field, transportation vehicle, sugar mill and ethanol refinery	53
Figure 4.5	Percent GHG emissions reduction in NR with $\pm 10\%$	67
Eigene 4 6	variation in sugarcane yield with respect to base case	67
Figure 4.6	Percent GHG emissions reduction in WR with $\pm 10\%$ variation in sugarcane yield with respect to base case	67
Figure 4.7	Net energy ratio (NER) for ethanol production in NR, with	70
119010 117	$\pm 10\%$ variation in sugarcane yield with respect to base case.	10
Figure 4.8	Net energy ratio (NER) for ethanol production in WR, with	71
115010 1.0	$\pm 10\%$ variation in sugarcane yield with respect to base	, 1
	case.	
Figure 5.1	Rice plants growing in standing water at fields	74
Figure 5.2	Farmers of India burning rice straw in the field	75
Figure 5.3	Lignocellulosic pilot plant based on dilute acid pretreatment	78
Figure 5.4	Lignocellulosic pilot plant based on steam explosion	78
	pretreatment	
Figure 5.5	Cellulosic ethanol production technology of IOCL	80
Figure 5.6	System boundary of 2G ethanol from rice straw	81

Figure 5.7	Mass balance of ethanol production using two different pretreatment technologies	88
Figure 5.8	GHG emissions from 1 ton processing of rice straw using dilute acid (DA) pretreatment	89
Figure 5.9	GHG emissions (kg CO_2 eq.) from 1 ton processing of rice straw using steam explosion (SE) pretreatment	90
Figure 5.10	GHG emission reductions of ethanol blends and pure ethanol with respect to gasoline obtained from SE and DA process	91
Figure 5.11	Life cycle fossil energy use in the ethanol production using DA and SE pretreatment	92
Figure 6.1	IOCL advanced pretreatment technology for ethanol production	104
Figure 6.2	System boundary of ethanol production	107
Figure 6.3	GWP of conventional and improved pretreatment method for ethanol production	112
Figure 6.4	EP of conventional and improved pretreatment method for ethanol production	113
Figure 6.5	AP of conventional and improved pretreatment method for ethanol production	115
Figure 6.6	POCP of conventional and improved pretreatment method for ethanol production	116
Figure 6.7	Conversion cost breakdown in an ethanol plant	117
Figure 6.8	Life cycle costing of the ethanol produced in different pretreatment scenarios	117
Figure 7.1	Rabi and Kharif rice producing states in India	121
Figure 7.2	System boundary of rice straw utilization systems in India	123
Figure 7.3	Global warming potential (GWP) of rice straw utilization systems	133
Figure 7.4	Eutrophication potential (EP) of rice straw utilization system	135
Figure 7.5	Acidification potential (AP) of rice straw utilization systems	137
Figure 7.6	Photochemical oxidant creation potential (POCP) of rice straw utilization systems	139
Figure 7.7	Sensitivity analysis on effect of varying transportation distances on GWP	140
Figure 7.8	GHG emissions of different rice straw utilization practices in India	142